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The primary characteristic of interval temporal logic is that intervals, rather than points, 
are taken as the primitive ontological entities. Given their generally bad computational 
behavior of interval temporal logics, several techniques exist to produce decidable and 
computationally affordable temporal logics based on intervals. In this paper we take 
inspiration from Golumbic and Shamir’s coarser interval algebras, which generalize the 
classical Allen’s Interval Algebra, in order to define two previously unknown variants of 
Halpern and Shoham’s logic (HS) based on coarser relations. We prove that, perhaps 
surprisingly, the satisfiability problem for the coarsest of the two variants, namely HS3, 
not only is decidable, but PSpace-complete in the finite/discrete case, and PSpace-hard in 
any other case; besides proving its complexity bounds, we implement a tableau-based 
satisfiability checker for it and test it against a systematically generated benchmark. 
Our results are strengthened by showing that not all coarser-than-Allen’s relations are 
a guarantee of decidability, as we prove that the second variant, namely HS7, remains 
undecidable in all interesting cases.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Interval Temporal Logics (ITLs) consider time intervals as the primitive ontological entities. This represents an advantage 
when dealing with some relevant application domains such as planning and synthesis of controllers, which are characterized 
by advanced features that are neglected or dealt with in an unsatisfactory way by point-based formalisms. ITLs have been 
applied in several fields such as hardware and real-time system verification, language processing, constraint satisfaction and 
planning [38,2,21,40]. Moreover, due to the fact that temporal logics are considered as the natural basis for temporal exten-
sions of Description Logics [6], several attempts have been made to design interval-based extensions of such formalisms [41,
10,5,4]. ITLs can be also considered as the temporal counterpart of TSQL, that is, the temporal extension to the language 
SQL for databases, included in the standard SQL:2011 [45]. Halpern and Shoham’s Modal Logic of Allen’s Relations (HS) may 
very well be the most prominent ITL [28]. Its elegance and expressive power have attracted the attention of the temporal 
and modal logic communities; however, promising applications have been hampered by the fact, already discovered when 
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the logic was first introduced, that HS is highly undecidable. Various strategies have been considered in the literature to 
define fragments or variants of HS with a better computational behavior. These include constraining the underlying tempo-
ral structure [37], restricting the set of modal operators [14,1], softening the semantics to a reflexive one [30,33], restricting 
the nesting of modal operators [17], and restricting the propositional power of the languages [19].

Allen’s Interval Algebra (IA) [2] is the backbone of HS: modal operators in the HS repertoire correspond to Allen’s 
interval relations. Our proposal is based on Golumbic and Shamir’s [26] idea to consider interval relations that describe a 
less precise relationship between intervals. They reduce the set of binary relations of Allen’s Interval Algebra (IA) [2] by 
defining coarser relations, each corresponding to the logical disjunction of some Allen’s relations; this approach generates 
two natural coarser algebras, namely IA7 and IA3. The former involves seven relations, by preserving the original relations 
before, after, and equal to, by joining meets and overlaps into a single relation (and similarly for their inverses), and by 
joining during, starts, and finishes into a single relation (and, again, similarly for their inverse ones). On the other hand, 
the latter takes into consideration only three relations: the original before and after, plus a relation (intersects) that can be 
viewed as the disjunction of all the remaining ones (and therefore is the inverse of itself and includes equality). The coarser 
algebras IA7 and IA3 inspire the logics HS7 and HS3 proposed in this paper. These languages follow similar ideas to the 
standard SQL:2011 [29], where interval relations are not necessarily Allen’s ones (for example, later is interpreted as the 
disjunction of Allen’s meets and later); therefore, they can be applied not only to classical areas of artificial intelligence, but 
also to temporal databases. We prove that the satisfiability problem for HS3 is PSpace-complete in the finite/discrete case, 
and it is PSpace-hard when interpreted in any interesting class of linearly ordered sets, but that coarser relations do not 
guarantee the decidability of an interval temporal logic, because HS7 remains undecidable over every interesting class of 
linearly ordered sets.

A partial picture of the computational behavior of the satisfiability problem for HS3 in some cases could already be drawn 
from recent results concerning fragments of HS [34,15]. As a matter of fact, we can prove that HS3 can be (polynomially) 
embedded into the ABBA fragment of HS (the relations before and after can be immediately expressed in terms of meets
and met by, while the relation intersect can be obtained by means of a combination of the modalities in ABBA); since ABBA
is decidable, but not primitive recursive, in the finite case [34] as well as in the case of the rational numbers [15], so is HS3. 
Here we prove that its satisfiability problem is, in fact, PSpace-complete (a much stronger result) in the finite/discrete case 
and PSpace-hard in all other classes. Similarly, we know that just one modality in the HS7 machinery, namely the one that 
corresponds to the disjunction of starts, finishes and during, alone implies the undecidability of the satisfiability problem of 
any temporal logic that contains it in the finite/discrete case [30]; here, we strengthen this results for HS7, as our proof 
also applies to all cases already covered from [30]. It is worth mentioning that HS3 is a unique case in the universe of 
the (few) decidable interval temporal logics; the only other example of interval temporal logics with a PSpace satisfiability 
problem is the fragment DDBBEE of HS, but only in the case of rational numbers [35], and the fragment D in its reflexive 
variant [33]. On the other hand, the maximal decidable fragments of HS in the finite/discrete case are the fragments ABBL
and AEEL (the fragment ABBA, that contains both, is decidable only on finite or rational frames), and they are not left/right 
symmetric, limiting their applicability (already hampered by the fact that their satisfiability problem is ExpSpace-complete).

The paper is organized as follows. We first give the necessary preliminaries, and in Section 3 we give working examples 
that highlight the expressive power of HS3. Section 4 is devoted to the complexity of the satisfiability problem for HS3. In 
Section 5 we discuss the satisfiability problem for HS7 and prove that it is generally undecidable, and, finally, in Section 6
we describe an implementation of a satisfiability checker for HS3 along with the results of a series of systematic tests, 
before concluding in Section 7.

2. Preliminaries

In this section we give some necessary preliminaries for the rest of the work.

2.1. Syntax

Let D = 〈D, <〉 be a strict linear order. A strict interval (respectively, non-strict interval) over D is an ordered pair [x, y], 
where x, y ∈ D and x < y (respectively, x ≤ y). In the recent literature, the strict semantics, where only strict intervals are 
considered, is usually adopted. This conforms to the definition of interval adopted by Allen [2], but differs from the one given 
by Halpern and Shoham [28]. If we exclude the identity relation, there are 12 different relations between two intervals in 
a linear order, often called Allen’s relations [2]: the six relations R A (adjacent to), R L (later than), R B (begins), R E (ends), 
R D (during), and R O (overlaps), depicted in Fig. 1, and their inverses, that is, R X = (R X )−1, for each X ∈ {A, L, B, E, D, O }. 
We interpret interval structures as Kripke structures, with Allen’s relations playing the role of the accessibility relations. 
Thus, we associate a universal modality [X] and an existential modality 〈X〉 with each Allen’s relation R X . For each X ∈
{A, L, B, E, D, O }, the inverse of the modalities [X] and 〈X〉 are the modalities [X] and 〈X〉, corresponding to the inverse 
relation R X of R X . Halpern and Shoham’s logic HS [28] is a multi-modal logic with formulæ built from a finite, non-empty 
set AP of atomic propositions (also referred to as proposition letters), the classical propositional connectives, and a modal 
operator for each Allen’s relation, as follows:

ϕ ::= ⊥ | p | ¬ψ | ψ ∨ ξ | ψ ∧ ξ | 〈X〉ψ | 〈X〉ψ.
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Fig. 1. Allen’s interval relations, HS modalities, and HS3/HS7 modalities.

In the above grammar, p ∈ AP and X ∈ {A, L, B, E, D, O }, and the other propositional connectives and constants (e.g., →, 
and �), as well as the dual modalities (e.g., [A]ϕ ≡ ¬〈A〉¬ϕ), can be derived in the standard way. In general, given any 
subset S ⊆ {X, X : X ∈ {A, L, B, E, D, O }}, one can define the relation

R S =
⋃
X∈S

R X ∪
⋃
X∈S

R X .

The corresponding modal operator can be denoted by simply juxtaposing the original symbols to obtain a string: for ex-
ample, the modal operator that is the disjunction of Allen’s relations overlaps and during would be denoted by 〈O D〉. In 
some cases, such as the relation intersect, we introduce a shorthand for the sake of readability, so that I = A AB B E E O O D D . 
Well-formed HS3 formulæ can be obtained by the above grammar with X ∈ {L, I}, while HS7 formulæ are defined under the 
restriction that X ∈ {L, A O , D B E}.1

2.2. Semantics

The semantics of HS and both HS3 and HS7 is given in terms of interval models M = 〈I(D), V 〉, where D is a linear order, 
I(D) is the set of all (strict) intervals over D, and V is a valuation function V : AP �→ 2I(D) , which assigns to each atomic 
proposition p ∈ AP the set of intervals V (p) on which p holds. The truth of a formula ϕ on a given interval [x, y] in an 
interval model M is defined by structural induction on formulæ as follows:

• M, [x, y] � p if [x, y] ∈ V (p), for p ∈AP;
• M, [x, y] � ¬ψ if M, [x, y] �� ψ ;
• M, [x, y] � ψ ∨ ξ if M, [x, y] � ψ or M, [x, y] � ξ ;
• M, [x, y] � ψ ∧ ξ if M, [x, y] � ψ and M, [x, y] � ξ ;
• M, [x, y] � 〈X〉ψ if there is [z, t] with [x, y]R X [z, t] and M, [z, t] � ψ ;
• M, [x, y] � 〈X〉ψ if there is [z, t] with [x, y]R X [z, t] and M, [z, t] � ψ .

Fig. 1 describes the semantics of HS7 and HS3 operators in terms of that of HS operators. Notice that a distinguishing 
characteristic ofs HS, inherited by the fragments considered in this paper, is the fact that the truth of a propositional letter 
over a given interval has no influence on the truth of the same propositional letter on the intervals contained in it, nor 
its points. Alternative choices include the locality principle, that implies assigning the same truth value to a propositional 
letter over an interval as over its starting points (see [38] for the introduction of locality in ITLs, and more recent work, 
such as [32], for an example of a renewed interest in constraining principles). This and other, similar, model-theoretic 
constraints have been shown useful in several applications and help reduce the complexity of problems such as satisfiability 
or model-checking, but here we follow the most general approach, in which undecidability is the rule and decidability the 

1 This notation should not be confused with the standard notation for fragments of HS, indicated by the set of its modal operators, e.g., ABBA, which 
includes four modal relations, namely, 〈A〉, 〈A〉, 〈B〉, and 〈B〉.
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Table 1
Bike sharing system database.

Trips

trip_id starttime stoptime bikeid from_st_id to_st_id

4118 2013-06-27 12:11 2013-06-27 12:16 316 85 28
4275 2013-06-27 14:44 2013-06-27 14:45 64 32 32
4291 2013-06-27 14:58 2013-06-27 15:05 433 32 19
4316 2013-06-27 15:06 2013-06-27 15:09 123 19 19
4342 2013-06-27 15:13 2013-06-27 15:27 852 19 55
4480 2013-06-27 19:40 2013-06-27 22:28 27 340 46

Maintenance

repair_id starttime stoptime bikeid from_st_id to_st_id

5327 2013-06-28 09:05 2013-06-28 10:15 594 27 1
5335 2013-06-28 09:14 2013-06-28 10:41 227 26 1
5346 2013-06-28 09:26 2013-06-28 14:25 118 74 1
5353 2013-06-28 09:35 2013-06-28 09:50 226 24 1

exception. It is worth observing that both HS3 and HS7 are expressive enough to simulate the universal operator, and this 
depends essentially on their modalities being jointly exhaustive; for HS3 we have:

[G]ϕ = ϕ ∧
∧

X∈{L,I}
([X]ϕ ∧ [X]ϕ),

while for HS7:

[G]ϕ = ϕ ∧
∧

X∈{L,A O ,D B E}
([X]ϕ ∧ [X]ϕ).

Formulæ of HS, and therefore of HS3 and HS7, can be interpreted over several different classes of interval models. Their 
frame properties sometimes influence the computational complexity of the satisfiability problem, as witnessed by the recent 
series of results [14,1]. Notable classes of linear orders include Lin, that is, the class of all linear orders, the class Fin of all 
finite linear orders, and the classes that are built over N, Z, Q, R. As far as the class of all dense linear orders is concerned, a 
simple application of both the downward Löwenheim–Skolem’s Theorem and Cantor’s Theorem proves that the decidability 
of a fragment of HS over Q implies the decidability of the same fragment on a generic dense linear order. We generically 
use the expression the finite/discrete case for the cases that include Fin, N, and Z, but also the class Dis of all discrete linear 
orders. Beside notable exceptions such as the fragment ABBA of HS, fragments of HS tend to behave in a similar way in all 
finite/discrete cases.

3. Coarser interval relations at work

In this section we discuss two working examples of temporal reasoning in coarser interval temporal logics.

3.1. An example as a specification language

This example is inspired by Divvy, the City of Chicago’s bike sharing system. The system consists of a fleet of bikes that 
are locked into a network of docking stations located throughout the city. Bikes can be rented from and returned to any 
station in the city, creating a network of trips with many possible combinations of starting and ending points. Anonymous 
trip data are stored in a temporal database and openly available through the Divvy Data Challenge program. The database 
consists of two tables (see Table 1): Trips, that stores the data on the user rentals, and Maintenance, that stores the data on 
the repairs and other maintenance activities of the bikes. We assume that repairs and maintenance always take place at a 
special station with identifier 1. Since this is naturally temporal information, tables are equipped, among other attributes, 
with a starttime and a stoptime for each tuple; the interval identified by the two endpoints can be interpreted as the valid 
time of the tuple (see, e.g. [22]). Interval temporal logics can be used to reason on the database in at least two different 
ways: as query languages to extract information from a current instance of the data and as specification languages to express 
functional dependencies, integrity constraints and other requirements that must be met by every instance of the data; in 
this example, we follow the latter approach and use HS3 as a specification language. Once the requirements are defined and 
formalized by the domain experts, one of the first problems that one must solve is the consistency problem, namely, the 
problem of checking whether they can be met by an actual instance of the database or not. In its most general formalization, 
the consistency problem can be solved by checking whether the set of formulæ representing the requirements is satisfiable.

Formulæ expressing the requirements will be built from the following propositional letters: trip (i, j, k) to represent that 
the bike i performed a trip from station j to station k, and repair (i, j, k) to represent that bike i was collected at station j
and brought to station k to be repaired. Although HS3 is not nearly as expressive as full HS, some very natural requirements 
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can be written in this language. To start with, we can enforce on the Trip table that at any time instant a given bike 
can belong to at most one trip. More formally, for every bike identifier i, no pairs of intervals satisfying trip (i, j, k) and 
trip (i, l, m) can share any point (in particular, a trip cannot start at the same time when the previous trip ended):∧

i, j,k

[G](trip (i, j,k) →
∧

( j,k) �=(l,m)

¬trip (i, l,m)).

Similarly, we can ensure that two repairs for the same bike do not overlap:∧
i, j,k

[G](repair (i, j,k) →
∧

( j,k) �=(l,m)

¬repair (i, l,m)).

Here and below, whenever necessary, we use trip (i) as syntactic sugar for 
∨

j,k trip (i, j, k), and repair (i) as syntactic sugar 
for 

∨
j,k repair (i, j, k):∧

i

[G](repair (i) → (¬〈I〉repair (i))).

During maintenance a bike cannot do any trip (and vice-versa):∧
i

[G](repair (i) → (¬trip (i) ∧ ¬〈I〉trip (i))),

∧
i

[G](trip (i) → (¬repair (i) ∧ ¬〈I〉repair (i))).

Then, we guarantee that a repair finishes in station 1 and starts from a station different from 1:∧
i, j

[G](¬repair (i,1, j) ∧
∧
k �=1

¬repair (i, j,k)).

Finally, we guarantee that maintenance is performed regularly:∧
i

[G]〈L〉repair (i).

The above formalization is arguably simple and intuitive. While it may seem that a similar, maybe less immediate, 
formalization could be carried out in some point-based temporal logic such as LTL, it is easy to extend our model to 
include pure interval-based properties. Indeed, it is not uncommon that systems such as the above one are paired up with 
meteorological information, for statistical or knowledge extraction purposes. Moreover, such meteorological information can 
be enriched with data concerning the pollution levels, and, in particular, with anti-pollution measures taken by the city 
councils. Now, suppose that in order to promote the use of bike sharing systems over private cars it is decided that rates for 
those trips that occur during intervals of time in which anti-pollution measures are active must be discounted. In order to 
make the service more appealing, it is decided that such discounts apply to all trips that overlap in any way an interval of 
time in which anti-pollution measures are active. Assuming that anti_pollution labels all intervals in which some measure 
is active, and that discount (i), as a shortcut for 

∨
j,k discount (i, j, k), labels all and only those trips that will be eligible for 

a discount, we can state:∧
i

[G]((trip (i) ∧ 〈I〉anti_pollution ) → discount (i)).

3.2. An example in natural language processing

Natural language processing is a well-established branch of Artificial Intelligence, and it is well-known that the structure 
of natural language can be, at least partly, described with interval temporal logic constructs [40,3]. Recently, the rise of 
automatic personal assistants (e.g., chatbots) has given a new meaning to natural language processing, and tools for this task 
are being studied and developed. One of the major challenges in the automatic processing of a text is context retrieval [8], 
and, as a consequence, context description. A context can be seen as an interval during a conversation in which a particular 
topic is being discussed. Because of its nature, a context cannot be forced to be an uninterrupted sequence of instants 
in which that particular topic is being discussed; therefore, intervals are labeled with propositional letters that represent 
contexts without using any projection principles such as locality or homogeneity (see Section 2). Moreover, in a conversation 
the contexts may overlap each other, and more generally, they may be in any Allen’s relation with each other.

In this example, a certain company is designing a natural language processing tool to analyze conversations between 
agents and clients. The agents contact the clients with the aim of selling a certain product, and the company has specific 
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requirements concerning the ordering and structure of the conversation, which can be described as requirements on the 
various contexts that arise during a conversation. They impose that some essential contexts, such as the price of the product 
(denoted by price ), its known advantages (advantages ) over other products, and its possible minor defects (defects ) must 
arise during the conversation:

〈L〉price ∧ 〈L〉advantages ∧ 〈L〉defects .

The company also wants that the disadvantages of the product are never discussed together with the price, in order to keep 
these two concepts separated during the conversation:

[G](price → ¬〈I〉defects ).

In order to stress the positive message, the company also requires that the advantages are mentioned, separately, before 
and after mentioning the defects of the product:

[G](defects → (〈L〉advantages ∧ 〈L〉advantages )).

Finally, the company wants that the price is never mentioned without recalling the advantages of the product:

[G](price → 〈I〉advantages ).

4. HS3 is PSPACE-complete

In this section, we first prove that the satisfiability problem for HS3 is PSpace-hard, regardless of the class of linearly 
ordered sets on which interpreted, and, then, that it is also in PSpace when it is interpreted in the class of all finite linear 
orders or in N/Z. As usual, the constructions and the underlying ideas in the finite case are emblematic for the entire 
range of classes of discrete structures; therefore, for the finite case we give a small model theorem in detail, a PSpace, 
non-deterministic, algorithm, and a possible deterministic implementation in the form of a tableau, while for the case of 
N we simply outline a small periodic model theorem. The cases of Z and the class of all discrete linear orders Dis can be 
considered simple (albeit technically not trivial) generalizations of the case of N.

4.1. Compass structure interpretation

Given a linear order D one can alternatively think of an HS model as a compass structure G = (D, L), where strict 
intervals [x, y] are seen as points (x, y) in the half-plane D ×D identified by the constraint x < y, L is an extended labeling 
L : D × D → 2Cl(ϕ) , Cl(ϕ) is the set of all sub-formulæ of a given formula ϕ , and L(x, y) denotes the subset of Cl(ϕ)

of precisely those formulæ that are true at the interval [x, y] (including propositional letters). Modal operators are then 
immediately interpreted in a geometric way (e.g., the modality 〈B〉, 〈B〉 correspond to moving on a vertical line in the plane, 
while 〈E〉, 〈E〉 correspond to moving on a horizontal line). Such an interpretation, that works nicely also for its fragments of 
HS3 and HS7, was introduced in [44], and it has been used, among others, in [36,31], as an advanced tool for undecidability 
proofs.

4.2. Hardness

A Quantified Boolean (QB) formula is an expression of the form

θ = Q 1 p1 . . . Q n pn f ,

where f is a formula of propositional logic and, for all 1 ≤ i ≤ n, Q i is either ∀ or ∃. When every variable in a formula f is 
quantified, f is said to be a closed formula, and the truth problem for a closed QB formula is known to be PSpace-hard [42]. 
In the following, we provide a (LogSpace) reduction from the truth problem for closed QB formulæ to the satisfiability 
problem for HS3. Let P∀ (respectively, P∃) be the set of the indexes of the universally (respectively, existentially) quantified 
variables in θ . The strategy of our reduction is as follows. We want to encode a tree-like structure onto the linear ordering 
that underlies the model, without committing to any particular property of the ordering itself. Such a tree represents the 
QB formula θ in a very natural way: at each level i > 1, pi−1 occurs at least once if the i-th quantifier is existential (and 
it occurs either positive or negative), and at least twice if the i-th quantifier is universal (and it occurs both positively and 
negatively). So, for example, if f is a propositional formula where p1 occurs, then the quantified formula ∀p1 f is encoded 
in a binary tree with empty root and two children: one with p1 and the other one with ¬p1. For a tree of height n (which 
corresponds to the encoding of a quantified formula with n propositions), we use n + 1 propositional letters h1, . . . , hn+1 to 
encode the levels of the (at most binary) tree. The idea of the construction is exemplified in Fig. 2, in which the colors are 
consistent with the intervals in which each letter hi is true.
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Fig. 2. A tree-model for θ = ∀p1∃p2∀p3∃p4((p1 ∨ p2) ∧ (¬p1 ∨ ¬p2) ∧ (p3 ∨ p4) ∧ (¬p3 ∨ ¬p4)) (right-hand side) and its embedding into a compass 
structure (left-hand side).

Let ϕstart be the following formula:

ϕstart = h1 ∧
∧

1≤i≤n+1

[G](hi → ¬
∨

i< j≤n+1

h j)) (1)

∧
∧

1≤i≤n+1

[G](hi →
∨

i< j≤n+1

¬〈I〉h j). (2)

It is easy to see that, if M, [x, y] � ϕstart , then: (i) M, [x, y] � h1; (ii) if an interval [z, t] satisfies hi , then it does not satisfy 
any other h j with j �= i, and (iii) for every interval [z, t], then there is no interval [z′, t′] that intersects [z, t] and satisfies 
any other h j with j �= i.

By interpreting the h intervals as nodes of the tree, we know, thanks to ϕstart , that the root of the tree (h1) exists. The 
idea is to encode f quantifier-by-quantifier, so that at each level we need to take care of the specific quantifier. The interval 
labeled by h1 does not carry any propositional letter of f , and the truth values of p1, . . . , pn are encoded in hi -intervals 
with 2 < i ≤ n + 1. In the following, we say that [z′, t′] is a descendant of a given hi -interval [z, t] if one of two conditions 
apply: (i) either t < z′ < t′ < s for each h j-interval [s, s′] and each j ≤ i (right descendant), or (ii) s < z′ < t′ < z for each 
h j-interval [s′, s] and each j ≤ i (left descendant). Now, let ϕquant be the following formula:

ϕquant = [G]
∧

i∈P∀
(hi → 〈I〉(

∧
1≤ j<i

[I]¬h j ∧ 〈I〉(hi+1 ∧ pi))) (3)

∧ [G]
∧

i∈P∀
(hi → 〈I〉(

∧
1≤ j<i

[I]¬h j ∧ 〈I〉(hi+1 ∧ ¬pi))) (4)

∧ [G]
∧
i∈P∃

(hi → 〈I〉(
∧

1≤ j<i

[I]¬h j ∧ 〈I〉hi+1)). (5)

Lemma 1. Let M, [x, y] � ϕstart ∧ ϕquant .

(i) If M, [z, t] � hi and the i-th quantifier of f is universal, then there exist distinct descendants [z′, t′] and [z′′, t′′], such that 
M, [z′, t′] � hi+1 ∧ pi and M, [z′′, t′′] � hi+1 ∧ ¬pi ;

(ii) If M, [z, t] � hi and the i-th quantifier of f is existential, then there exists a descendant [z′, t′] such that M, [z′, t′] � hi+1 ∧ pi or 
M, [z′, t′] � hi+1 ∧ ¬pi .

Proof. Suppose that M, [x, y] � ϕstart ∧ ϕquant , that M, [z, t] � hi , and that the i-th quantifier of f is universal. Then, (3)
applies to [z, t], and, therefore, there must be an [z′, t′] such that M, [z′, t′] � hi+1 ∧ pi . At the same time, (4) applies, so 
that there must also be an [z′′, t′] such that M, [z′′, t′′] � hi+1 ∧ ¬pi ; clearly, [z′, t′] �= [z′′, t′′]. Consider now the relative 
position of [z′, t′] with respect to any other h j -interval. First, notice that [z′, t′] can neither coincide nor intersect [z, t], 
thanks to ϕstart . Therefore, either z′ > t or t′ < z; let us assume the latter, without loss of generality. Let now be [s′, s]
the h j-interval, with j = i − 1 (if there is no such interval, then the position of [z′, t′] is trivially correct) such that s < z, 
for each s < s′′ < z, no interval of the type [s′′′, s′′] is an h j-interval (in other words, [s′, s] can be regarded to as the 
immediate h j -predecessor of [z, t]; such an intuitive notion, however, is imprecise over dense models). By ϕstart , we know 
that [z′, t′] can neither coincide nor intersect [s′, s]. Towards a contradiction, suppose that t < s′ , and that no interval [u, u′]
with s < u < u′ < z is an hi+1-interval. Then, (3) and (4) are both not satisfied; indeed, in this situation, every interval that 
intersects both [z, t] and [z′, t′] (and, so, every candidate to satisfy (3) or (4)) intersects also [s′, s], which is a contradiction. 
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Therefore, it must be the case that s < z′ < t′ < z, which is to say that [z′, t′] is a descendant of [z, t]. Since the same 
argument can be applied to [z′′, t′′], (i) follows. As for (ii), one simply replicates the same argument as above, using (5), but 
only once. �

Finally, we need to make sure that once a decision over the truth value of a given pi is taken, it is always respected. 
This means that the truth value of pi on a given node in the tree must be copied over every node in its own subtree. Since 
the tree is encoded in a linear ordering, there must be a way to distinguish the right subtree of a node from the left one; 
this is not guaranteed from the encoding so far (i.e., point (i) of the above lemma may be satisfied by two intervals on the 
same side with respect to the current node); it is, however, a consequence of the remaining part of the construction, where 
ϕcasc is the following formula:

ϕcasc = [G]
∧

2≤i≤n

((hi ∧ pi−1) → [I](
∧

1≤ j≤i−1

[I]¬h j → [I]pi−1)) (6)

∧ [G]
∧

2≤i≤n

((hi ∧ ¬pi−1) → [I](
∧

1≤ j≤i−1

[I]¬h j → [I]¬pi−1)). (7)

Lemma 2. Let M, [x, y] � ϕstart ∧ ϕquant ∧ ϕcasc , and let M, [z, t] � hi for some 2 ≤ i ≤ n + 1.

(i) If M, [z, t] � pi−1 , then each descendant of [z, t] is labeled by pi−1;
(ii) If M, [z, t] � ¬pi−1 , then each descendant of [z, t] is labeled by ¬pi−1 .

Proof. If M, [x, y] � ϕstart ∧ ϕquant ∧ ϕcasc , M, [z, t] � hi , and M, [z, t] � pi , then (6) applies. It is immediate to see that its 
consequent captures precisely the two maximal intervals2 (one to the left and one to the right) such that each h-type 
interval that intersect either of them is a descendant of [z, t] (or it is [z, t] itself). Since these intervals are precisely where 
pi is forced to hold, (i) is proved. The argument for (ii) is identical. �

Observe now that Lemma 1 and Lemma 2, combined, force any hi -interval that correspond to a universal quantifier to 
have both a left and a right descendants, one with pi and the other with ¬pi , as we wanted. Let us now set

ϕθ = [G](hn+1 → f ) ∧ ϕstart ∧ ϕquant ∧ ϕcasc.

Lemma 3. Let θ = Q 1 p1 . . . Q n pn f be a closed quantified Boolean formula. Then θ is true if and only if ϕθ is satisfiable.

Proof. Suppose first that θ is true; we want to prove that ϕθ is satisfiable on a finite model. Let us proceed by in-
duction on the number of variables of θ making sure that, at each step, the construction remains finite. As base case, 
suppose that θ has only one proposition, that is, θ = Q 1 p1 f , and f is a propositional formula in which only p1 oc-
curs. If Q 1 is universal, then f is satisfied no matter the value of p1; we can easily build a model M over the domain 
D = {0 < 1 < 2 < 3 < 4 < 5}, where V (p1) = V (h2) = {[0, 1], [4, 5]} and V (h1) = {[2, 3]}, and it is immediate to see that 
M, [2, 3] � ϕQ 1 p1 f . The case in which Q 1 is existential can be treated in a similar way. As far as the inductive step is con-
cerned, assume that Q 1 p1 Q 2 p2 . . . Q n pn f is satisfiable. By the inductive hypothesis, we know for every quantified formula 
with n − 1 propositional variables, the corresponding HS3 formula is satisfiable. Let us assume that Q 1 is universal. This 
means that the two formulæ Q 2 p2 . . . Q n pn f [p1/0] and Q 2 p2 . . . Q n pn f [p1/1] are satisfiable as well, and, since they have 
both n − 1 propositional variables, the inductive hypothesis applies. Let M1 and M2 be their respective models with finite 
domains D1 and D2. (Notice that we are assuming that M1, M2 are models over the letters h2, . . . , hn+1, p2, . . . , pn). Now, 
let M ′

1 (respectively, M ′
2) be the model obtained from M1 (respectively, M2) by simply making p1 true (respectively, false) 

everywhere in the model. We now build a model M based on the domain D1 ∪ {0 < 1} ∪ D2, where we assume that 0, 1
are new two fresh points and that 0 is greater than every point of D1 and, respectively, 1 is smaller than every point of D2. 
The valuation of M can be built as follows: (i) V (h1) = {[0, 1]}; (ii) V (p) = V ′

1(p) for each interval that belongs to M ′
1 and 

each propositional variable; (iii) V (p) = V ′
2(p) for each interval that belongs to M ′

2 and each propositional variable; (iv) for 
each [x, y] �= [0, 1] such that x ∈ D1 ∪ {0, 1} and that y ∈ D2 ∪ {0, 1}, [x, y] /∈ V (hi) for any 1 ≤ i ≤ n. It can be checked now 
that M, [0, 1] � ϕQ 1 p1 Q 2 p2...Q n pn f as we wanted. The case in which Q 1 is existential can be treated in a similar way.

Let us focus on the converse direction, and let us assume that ϕθ is satisfiable; we want to prove that θ is true. Let us 
proceed, as before, by induction on the number of propositional variables of θ . As base case, let θ = Q 1 p1 f , and let M be 
a linear model such that M, [x, y] � ϕQ 1 p1 f ; assume that Q 1 is universal. By, ϕstart , Lemma 1, and Lemma 2, we know that 
M, [x, y] � h1, that there exist two descendants [x′, y′] and [x′′, y′′] such that either y′ < x and x′′ > y, or x′ > y and y′′ < x, 
and that one of the following two cases hold: either M, [x′, y′] � h2 ∧ p1 ∧ f and M, [x′′, y′′] � h2 ∧ ¬p1 ∧ f , or M, [x′, y′] �

2 Over dense linear orders such intervals may not belong to the model, but the argument still holds.
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h2 ∧ ¬p1 ∧ f and M, [x′′, y′′] � h2 ∧ p1 ∧ f . Either way, f is satisfied no matter the value of p1, so that Q 1 p1 f is true. 
The case in which Q 1 is existential can be treated in a similar way. As far as the inductive case is concerned, assume that 
θ = Q 1 p1 Q 2 p2 . . . Q n pn f and that Q 1 is universal. Since ϕθ is satisfiable by the hypothesis, for some linear model M and 
some interval [x, y], we have that M, [x, y] � ϕθ . Let D be the linear ordering on which M is based. By ϕstart , M, [x, y] � h1. 
Let D1 ⊂D be set of points such that for each interval [x′, y′] such that x′, y′ ∈D1, [x′, y′] is a left descendant of [x, y], and 
let D2 ⊂ D be set of points such that for each interval [x′′, y′′] such that x′′, y′′ ∈ D1, [x′′, y′′] is a right descendant of [x, y]. 
By combining Lemmas 1 and 2 we know that D1, D2 are not empty, and that either M, [x′, y′] � p1 and M, [x′′, y′′] � ¬p1
for each [x′, y′] ∈ I(D1) and each [x′′, y′′] ∈ I(D2), or M, [x′, y′] � ¬p1 and M, [x′′, y′′] � p1 for each [x′, y′] ∈ I(D1) and each 
[x′′, y′′] ∈ I(D2). Notice that D1 (respectively, D2) can be seen as the underlying linear order of a model M1 (respectively, 
M2) for the propositional letters h2, . . . , hn+1, p2, . . . , pn . We also know that either M1, [x′, y′] � ϕQ 2 p2...Q n pn f [p1/0] for some 
[x′, y′] ∈ I(D1) and that M1, [x′′, y′′] � ϕQ 2 p2...Q n pn f [p1/1] for some [x′′, y′′] ∈ I(D2), or M1, [x′, y′] � ϕQ 2 p2...Q n pn f [p1/1] for 
some [x′, y′] ∈ I(D1) and that M1, [x′′, y′′] � ϕQ 2 p2...Q n pn f [p1/0] for some [x′′, y′′] ∈ I(D2). Thus, by inductive hypothesis, 
Q 1 p1 Q 2 p2 . . . Q n pn f is true. The case in which Q 1 is existential can be treated in a similar way. �
Theorem 1. The satisfiability problem for HS3 interpreted over any class of linear orders is PSpace-hard.

Proof. Since Lemma 3 proves that the satisfiability problem for QB formulæ can be reduced in LogSpace to the satisfiability 
problem for HS3, the result is immediate. �
4.3. PSpace membership: the finite case

Now, we prove that the satisfiability problem for HS3 is decidable in PSpace in the particular case of finite linear orders.
We start by proving the small model property for HS3 interpreted over finite models, which is key to showing decidability 

(and complexity) of the satisfiability problem. This is taken care by Lemma 4 below; given its importance, it is convenient 
to understand the driving concepts before getting into the technical details. In the finite case, every satisfiable formula has 
a finite model; we compute a bound for the size of such model, and we prove that every model exceeding the bound 
can be reduced to a smaller model that satisfies the same formula. To this end, we provide a description of each row of 
the compass structure that represents a model; such a (finite) description is carefully designed to achieve two goals: first, 
there must be a finite number of different descriptions, and, second, when two rows with the same description occur, the 
portion of the model above each of them must be (essentially) the same. So, the number of different descriptions will be 
our computed bound, and we shall refer to a model G (bigger than such a bound) and its contracted version G′ , where the 
portion of the model that exists between two rows with the same description is eliminated. The initial part of the proof is 
devoted to defining the description of a row; the second part to the definition of contracted model; and the last two parts 
of the proof to showing that in the resulting structure every universal formula is respected and every existential formula is 
eventually satisfied. Observe that each formula ϕ is equi-satisfiable with

ϕ′ = ϕ ∨ 〈I〉ϕ ∨ 〈L〉ϕ.

Indeed, it is easy to see there exists a compass structure G = (D, L) for ϕ if and only if there exists a compass structure 
G′ = (D, L′) for ϕ′ with ϕ′ ∈ L(0, 1); this notion is also called initial satisfiability. Then, without loss of generality, we focus 
on initial satisfiability only, that is, we search only for models whose domain is of the type {0, 1, 2, . . .}, where [0, 1] is the 
initial interval.

Lemma 4. Let ϕ be a finitely satisfiable HS3 formula. Then it is satisfied on a model M with D of cardinality 2O (|ϕ|3) .

Proof. Let G = (D, L) be a compass structure that (initially) satisfies the formula ϕ . We prove that if the size of D exceeds 
the bound, then there exists a compass structure G′ = (D′, L′) for ϕ with |D′| < |D|. The contraction method obtained in 
this way can be iterated in order to obtain a model whose cardinality does not exceed the given bound.

Definitions. Given G = (D, L) that satisfies ϕ , for a point (x, y) we can define the set of its requests as the subset of Cl(ϕ)

that holds on the interval [x, y]. Intuitively, a request is a temporal formula to be satisfied somewhere; it may be existential, 
and therefore must be witnessed by some interval, or universal, and therefore it influences only the labels of the already 
existing intervals. A set of requests behaves differently depending on the modal operators that are involved in it. We choose 
to consider the requests of the type 〈I〉, 〈L〉 together, and separate them from the requests of the type 〈L〉, as follows: we 
define the set RI L(x, y) as the subset of L(x, y) that contains only formulas of the type 〈I〉ψ, [I]ψ, 〈L〉ψ , or [L]ψ , and the 
set RL(x, y) as the subset of L(x, y) that contains only formulas of the type 〈L〉ψ, [L]ψ . By exploiting the properties of our 
modal operators we can represent the requests in a more convenient way. Indeed, observe that given two intervals [x, y]
and [x′, y] with x > x′ , every existential request 〈I〉ξ on [x′, y] is also on [x, y], and every universal request [I]ξ on [x′, y] is 
also on [x, y]; moreover, every existential request 〈L〉ξ on [x, y] is also on [x′, y] and every universal request [L]ξ on [x′, y]
is also on [x, y]. These two properties together allow us to define the set of requests of a row y in G , as follows:
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RI L(y) = {RI L(x, y) : 0 ≤ x < y}.
Then, we can represent it as a sequence (which we call a chain) R1, R2, . . ., R |RI L(y)| , because there is an implicit (set-
containment) ordering among its elements. In a similar way, for every 0 ≤ x, x′ ≤ y, we have RL(x, y) =RL(x′, y) and, thus, 
on a row y, we can define:

RL(y) = RL(x, y), for any 0 ≤ x < y.

(The asymmetry between types of requests is due to the inherent asymmetry of compass structures.) Now, observe that 
|RI L(x, y)|, |RL(x, y)| ≤ |ϕ| for every interval [x, y]. This immediately implies that |RL(y)| ≤ |ϕ|, but also that |RI L(y)| ≤
|ϕ|. To see this, recall that every element R of a chain RI L(y) can be ideally separated into four components, namely the 
existential and the universal requests of type 〈I〉 and 〈L〉: the regularity property that we have observed above effectively 
limits the maximal cardinality of each component, and therefore also the cardinality of different Rs that may occur on a 
single row. As a consequence, the number of possible different chains RI L (y) is bounded by |ϕ|! ≤ |ϕ||ϕ| = 2|ϕ| log(|ϕ|) . Now, 
if 0 is the first point of the model, then a chain RI L(y) contains sets of requests for the intervals [0, y], [1, y], . . ., and so 
on; since, as we have already observed, the requests in (the components of the) successive Rs grow monotonically bigger 
or smaller, there will be a subset of points 0, . . . , m ≤ y in which all sets of requests are identical, and they change at the 
interval [m + 1, y]: this structure repeats itself along the chain, so that we can count, for each set of request that occurs in 
it, the number of consecutive points in which it appears. Now let S : I(D) → 2Cl(ϕ) be a function such that

S(x, y) = {ψ ∈ Cl(ϕ) : there are x′, y′ such that 0 ≤ x′ ≤ x < y ≤ y′
and ψ ∈ L(x′, y′)}.

Intuitively, S associates to each point (x, y) all the formulæ (in the closure of ϕ) that occur in the maximum rectangle that 
has (x, y) as it lower right corner (this notion is well defined as G is a finite compass structure and it is geometrically 
interpreted); we call S(x, y) the rectangle of (x, y). If we fix a row y, then it is easy to prove that the sets S(x, y) enjoy 
similar regularity properties as the sets of requests, so that S(0, y) ⊆ S(1, y) ⊆ . . . ⊆ S(y − 1, y). As before, this allows us 
to effectively bound the cardinality of any such set; in fact, we have |S(x, y)| ≤ 2 · |ϕ|. Therefore, we can represent these 
components on a row y as we did for the requests; if �(y) = {S(x, y) : 0 ≤ x < y} is the chain of sets S(x, y) on the row 
y, then |�(y)| ≤ 2 · |ϕ| (observe that the sets S(x, y) do not need to be consistent, so that it can contain both a formula 
and its negation). Each element of a chain �(y) can be chosen among 22·|ϕ| , so that the number of possible different chains 
�(y) is bounded by 22·|ϕ| · 22·|ϕ|−1 · . . . · 1, which, in turn, can be bounded by 2|ϕ|2 . Let us associate to a single row y a 
function

count(y) : RI L(y) × �(y) → {1, . . . ,4 · |ϕ| + 1},
such that, for each R ∈RI L(y) and every L ∈ �(y), we have that

count(y)(R, L) = min{4 · |ϕ| + 1, |{x : RI L(x, y) = R and S(x, y) = L}|}.
Observe that, for a row y, a chain RI L(y), and a chain �(y), there can be at most (4 · |ϕ| + 1)|ϕ|2 = 2|ϕ|2 log(4·|ϕ|+1) possible 
count(y) functions; this can be justified by observing that a given chain can be associated to a different function depending 
on how many times a given set of requests and how many times a given rectangle occur at a given position. At this point, 
for each y we define

row(y) = (RL(y),RI L(y), count(y),�(y)).

This can be regarded as a complete description of the row y of the compass structure (limited to the information that we 
need to perform the contraction). Taking into account the number of different component of each row(y), the number of 
the possible values for row(y) is bounded by

|ϕ| · 2|ϕ|·log(|ϕ|) · 2|ϕ|2·log(4·|ϕ|+1) · 2|ϕ|2 = |ϕ| · 2|ϕ|·(|ϕ|·log(4·|ϕ|+1)+log(|ϕ|)+|ϕ|) = 2O (|ϕ|3),

as we wanted.

Contraction. If |D| exceeds the above bound, then, by a simple combinatorial argument, there must exist two rows 
y1 < y2 with row(y1) = row(y2) (Fig. 3). Indeed, let us analyze the component of the above bound: |ϕ| takes into account 
the number of different RL(y) (in order for the contraction to work on the diagonal), 2|ϕ| log(|ϕ|) counts the number of 
possible different chains of requests (so that we make sure to have two rows with the same chain), 2|ϕ|2 log(4·|ϕ|+1) counts 
the number of possible different functions count(y) for the given row (so that we make sure that we have two row with 
the same chain and the same count), and 2|ϕ|2 is the number of possible chains �(y) (to make sure that the rectangles 
identified by y1 and y2 is the same). In order to prove that we can safely contract the model between y1 and y2, let 
us focus our attention on the set Rec(y2) in G that contains all and only such points (z, t) where z ≤ y and t > y. For 
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Fig. 3. A picture of the contraction method. In gray, the contracted area; in red, the down-left triangle (preserved); in yellow, the up-right triangle (moved 
without changes); and, in green, the vertical segments that have been copied from G to G′ . (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

each ψ ∈ Cl(ϕ), if ψ ∈ L(z, t) and (z, t) ∈ Rec(y), then we can identify four points (z∗, t∗) with ∗ ∈ {right, le f t, up, down}
and ψ ∈ L(z∗, t∗) as follows: for every (z′, t′), if ψ ∈ L(z′, t′) then zlef t ≤ z′ ≤ zright and tdown ≤ t′ ≤ tup . In other words, 
the points (z∗, t∗) with ∗ ∈ {right, le f t, up, down} are, respectively, the rightmost, leftmost, highest, and lowest occurrences 
of ψ in the rectangle of y. We define the set W(y) ⊆ {0, . . . , y}, for a given y, as a minimal subset of {0, . . . , y} such 
that contains all rightmost, leftmost, highest, and lowest witnesses of ψ in y for each ψ ∈ Cl(ϕ). Thus, we can define the 
following non-decreasing monotone function:

g : {0, . . . , y1} → {0, . . . , y2}.
In the above definition we have that (i) for every x ∈ {0, . . . , y1}, we have RI L(x, y1) = RI L(g(x), y2), (ii) for every x ∈
{0, . . . , y1}, we have S(x, y1) = S(g(x), y2), (iii) Wy2 ⊆ Img(g), and y2 − 1 ∈ Img(g), where Img(g) is the image of g . 
Let � = y2 − y1; we can finally build the compass structure G′ = (D′, L′) with |D′| = |D| − �, where L′ is defined as 
follows:(i) L′(x, y) = L(x, y) for every 0 ≤ x ≤ y ≤ y1, (ii) L′(x, y) = L(x + �, y + �) for every y1 < x ≤ y ≤ |D′|, and (iii)
L′(x, y) = L(g(x), y + �) for every y1 < x ≤ y1 < y ≤ |D′|. In the following, we shall denote the coordinates in G with 
x, y, . . ., and those of G′ with x′, y′, . . .. There exists a natural correspondence between points in G and points in G′ , which 
depends on the particular area of G from which a certain point is copied; such a correspondence is key to the rest of the 
proof.

Consistency. Let us now prove that our new, smaller, compass structure is consistent, that is, that every universal request 
is respected. Given two points (x, y) and (z, t) in a compass structure, and given X ∈ {L, L, I}, we say that (x, y) →X (z, t) if 
and only if the following holds: if (x, y)R X (z, t) and [X]ξ ∈ L(x, y), then ξ ∈ L(z, t). In other words, (x, y) →X (z, t) if and 
only if (z, t) is consistent with the universal requests of (x, y) along the relation X . The following cases may arise for two 
points (x′, y′), (z′, t′) in G′ .

• If y′, t′ ≤ y′
1, then both points are located in an area of G′ (the down-left triangle) that has been preserved after the 

contraction; therefore, (x′, y′) →X (z′, t′) in G′ for each X ∈ {L, L, I} thanks to the fact that (x, y) →X (z, t) in G .
• If x′, z′ ≥ y′

1, then both points are located in an area of G′ (the up-right triangle) that has been moved without changing 
its structure, that is, x′ = x + � and y′ = y + �; therefore, (x′, y′) →X (z′, t′) in G′ for each X ∈ {L, L, I} thanks to the 
fact that (x, y) →X (z, t) in G .

• If y′ ≤ y′
1 and z′ ≥ y′

1, then clearly (x′, y′) belongs to the down-left triangle and two sub-cases arise: y′ < z′ , or y′ =
y′

1 = z′ . In the first case, (x′, y′)R L(z′, t′) in G′; this means that (x, y)R L(z +�, t +�), and, since (x, y) →L (z +�, t +�)

in G , we immediately obtain that (x′, y′) →L (z′, t′) in G′ . In the second case, (x′, y′)R A(z′, t′), that is, (x′, y′)R I (z′, t′). 
By construction, L′(x′, y′

1) =L(g(x), y2) and L′(y′
1, t

′) =L(g(y1), t′ +�). Observe that (g(x), y2)R I (x̄, ȳ) in G for every 
(x̄, ȳ) �= (g(x), y2) with ȳ ≥ y2 and x̄ ≤ y2; therefore, in G , we have that g(y1) ≤ y2 and t′ + � > y2, and this implies 
that (g(x), y2) →I (g(y1), t′ + �) in G , which, in turn, implies that (x′, y′

1) →I (y′
1, t

′) in G′ .
• The case z′ ≤ y′

1 and y′ ≥ y′
1 is symmetric to the above one.

• If y′ ≤ y′
1 and z′ < y′

1 < t′ then, as before, (x′, y′) belongs to the down-left triangle; moreover, there exists x̄ ≤ y′
1 such 

that L′(z′, t′) =L(g(x̄), t′ +�). Again, two sub-cases arise, namely: y′ < z′ or y′ ≥ z′ . In the first case, (x′, y′)R L(z′, t′) in 
G′ and, then, since g is monotonic non-decreasing, (x, y)R L(g(x̄), t′ + �) in G; this means that (x, y) →L (g(x̄), t′ + �)

in G , which, in turn, implies that (x′, y′) →L (z′, t′) in G′ . If, on the other hand, y′ ≥ z′ , then (x′, y′)R I (z′, t′) in G′
and there are two further sub-cases. If (x, y)R I (g(x̄), t′ + �) in G , then, as before, (x, y) →I (g(x̄), t′ + �) in G implies 
(x′, y′) →I (z′, t′) in G′ . If, on the other hand, (x, y)R L(g(x̄), t′ + �) in G , then, by construction, (x, y)R I (x̄, y1) and 
L(x̄, y1) = L(g(x̄), y2). Then, since S(x̄, y1) = S(g(x̄), y2), we have that (x, y) →I (g(x̄), ȳ) in G for every ȳ ≥ y2; in 
particular (x, y) →I (g(x̄), t′ + �), and thus, (x′, y′) →I (z′t′) in G′ .
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• The case t′ ≤ y′
1 and x′ < y′

1 < y′ is symmetric to the one above.
• If x′ > y′

1 and z′ < y′
1 < t′ then, by construction, there exists x̄ ≤ y1 such that L′(z′, t′) = L(g(x̄), t′ + �). Once again, 

two sub-cases may arise. If t′ < x′ , then (x′, y′)R L(z′, t′) in G′ , which implies that (x, y)R L(g(x̄), t′ + �) in G , and, since 
(x, y) →L (g(x̄), t′ + �) in G , we have that (x′, y′) →L (z′, t′). If, on the other hand, t′ > x′ , then t′ + � > x′ + �; so, 
since (x, y) →I (t′ + �) in G , we have that L′(x′, y′) →I L(z′, t′).

• The case z′ > y′
1 and x′ < y′

1 < y′ is symmetric.
• If z′ < y′

1 < t′ and x′ < y′
1 < y′ , then in this situation we have (x′, y′)R I (z′, t′), since y′

1 belongs to both intervals. 
Then, by construction, there exist x̄, ̄̄x ≤ y1 such that L′(x′, y′) = L(g(x̄), y′ + �) and L′(z′, t′) = L(g( ¯̄x), t′ + �). Since 
(g(x̄), y′ +�)R I (g( ¯̄x), t′ +�) in G (where y2 is the shared point in such case), we have that (g(x̄), y′ +�) →I (g( ¯̄x), t′ +
�) in G , which implies that (x′, y′) →I (z′, t′) in G′ .

Fulfillingness. Finally, it remains to prove that G′ is fulfilling, that is, that every existential request is eventually satisfied. 
Given (x′, y′) ∈ I(D′), three cases may arise, depending on where the existential request has originated:

• If y′ ≤ y′
1, then as far as the requests of the type 〈L〉 in L′(x′, y′) are concerned, since these originate and are satisfied in 

the down-left triangle of the structure which has not been modified by the contraction, fulfilling is guaranteed. Consider 
now a request of the type 〈L〉ψ ∈L′(x′, y′) =L(x, y), for which, in G , there exists (z, t) with z > y such that ψ ∈L(z, t); 
three sub-cases arise, depending on the position of (z, t) in the structure G . If t ≤ y1, then ψ ∈ L′(z′, t′) = L(z, t)
(again, everything is confined to the down-left triangle). If t > y2, then, by construction, ψ ∈ L(z − �, t − �) (in this 
case, fulfilling is guaranteed by the fact that the up-right triangle has been moved without changing its structure). If, 
finally, z ≤ y1 < t then, since g is monotone non-decreasing, there exists x̄ such that x ≤ x̄ ≤ y1 and ψ ∈ L(g()̄, ȳ)

for some ȳ > y2 and g(x̄) is the rightmost vertical segment starting at y2 and exhibiting ψ ; thus ψ ∈ L′(x̄′, ȳ − �), 
which is in relation R L with (x′, y′). It is important to notice that if z > y1, then we are back to the second sub-case, 
as (in G) 〈L〉ψ belongs to both RL(y1) and RL(y2), which must be equal. Now, let 〈I〉ψ ∈ L′(x′, y′); then, in G , 
there exists (z, t) such that (x, y)R I (z, yt) and ψ ∈ L(z, t). Two cases may arise, depending on the position of (z, t). 
If t ≤ y1, then ψ ∈ L′(z′, t′) = L(z, t) (again, everything is confined to the down-left triangle). If, on the other hand, 
t > y1, then z ≤ x < y1 < t , given that (z, t) must intersect (x, y). Let x̄ ≤ y be the leftmost index for which a vertical 
segment (starting at y1) starts that exhibits ψ : by construction, g(x̄) is the index which starts the leftmost vertical 
segment (starting at y2) that exhibits ψ . This means that there exists ψ ∈ L(g(x̄), ȳ) for some ȳ > y2, and, thus, 
ψ ∈L′(x̄, ȳ − �).

• If x′ > y′
1, then x′ = x − � and y′ = y − �. As far as the requests of the type 〈L〉 in L′(x′, y′) are concerned, since these 

are originated and satisfied in the up-right triangle of the structure which has been move without modifications to its 
structure, fulfilling is guaranteed. Consider now a request of the type 〈L〉ψ ∈L′(x′, y′) for which, in G , there exists (z, y)

with t < x such that ψ ∈ L(z, t); three sub-cases arise, depending on the position of (z, t) in the structure G . If z ≥ y2, 
then ψ ∈ L′(z − �, t − �) (again, everything is confined to the up-right triangle). If t ≤ y2, then either 〈L〉ψ belongs 
to some label L( ¯̄x, y2) or ψ belongs to some label L( ¯̄x, y2); either way, ψ ∈L′(z̄′, ȳ′) for some z̄′, ȳ′ ≤ y′

1 (notice that, 
since ψ occurs somewhere in the down-left triangle, it fulfills the request originated in (x′, y′) independently from its 
precise position). If, finally z < y2 < t then there exists x̄ ≤ y2 and ȳ < x such that ψ ∈ L(x̄, ȳ) and x̄ is the vertical 
segment (starting at y2) that exhibits ψ at the lowest coordinate; since g is monotone non-decreasing, and since we 
may assume x̄ ∈ Img(g), there exists ¯̄x ≤ y1 such that g( ¯̄x) = x̄, and, thus, ψ ∈ L′( ¯̄x′, ȳ − �) (in G′). Now, let 〈I〉ψ ∈
L′(x′, y′), for which, in G , there exists (z, t) with (x, y)R I (z, t) such that ψ ∈ L(z, t); two sub-cases arise, depending 
on the position of (z, t) in the structure G . If z ≥ y2, then ψ ∈ L′(z − �, t − �) = L(z′, t′) (one more time, everything 
is confined to the up-right triangle). If, on the other hand, z < y2, then t > x (since the intervals [x, y] and [z, t] must 
intersect each other). We have that there exists x̄ ≤ y2 such that the vertical segment that starts at y2 exhibits ψ at 
the highest coordinate; since g is monotone non-decreasing, and since we may assume x̄ ∈ Img(g), there exists ¯̄x ≤ y1
such that g( ¯̄x) = x̄. Now, we know that, for some ȳ ≥ t , ψ ∈ L(x̄, ȳ) (in G); by construction, ψ ∈ L′( ¯̄x′, ȳ − �) (in G′) 
and ( ¯̄x′, ȳ − �)R I (x − �, y − �), proving that the request is fulfilled.

• If x′ ≤ y′
1 and y′ > y′

1, then there exists x̄ ≤ y1 such that L′(x′, y′) = L(g(x̄), y + �). Clearly, x̄ ≤ x, as g is monotonic 
non-decreasing. Let 〈L〉ψ in L′(x′, y′)) = L(g(x̄), y + �). Then, since G is fulfilling and RL(g(x̄), y2) = RL(x̄, y1), there 
exists (z, t) with t < y1 such that ψ ∈ L(z, t). By construction, L(z, t) = L′(z′, t′) (since (z, t) belongs to the down-left 
triangle), and, in G′ , (x′, y′)R L(z′, t′); therefore, the request is satisfied. Let 〈L〉ψ be in L′(x′, y′) =L(g(x̄), y + �). Then, 
since G is fulfilling, there exists (z, t) with z > y + � such that ψ ∈ L(z, t). By construction, L(z, t) = L′(z − �, t − �)

and (x′, y′)R L(z − �, t − �), and, thus, the request is satisfied. Finally, let 〈I〉ψ be in L′(x′, y′) = L(g(x̄), y + �). Then, 
since G is fulfilling, there exists (z, t) such that, in G , (g(x̄), y + �)R I (z, t) for which ψ ∈L(z, t). Three cases may arise, 
depending on the position of (z, t). If t ≤ y1, then L(z, t) =L′(z′, t′) (that is, (z, t) is in the down-left triangle, preserved 
by the contraction), and, since g is monotonic non-decreasing, we have that x̄ ≤ g(x̄); therefore, (x′, y′)R I (z′, t′), and 
the request is satisfied. If z > y2 (that is, (z, t) is in the up-right triangle) then L(z′, t′) = L′(z − �, t − �), and, since 
(x′, y′)R I (z − �, t − �), the request is satisfied. If, on the other hand, z ≤ y2 < y and none of the previous case applies, 
then, by construction, there exist x̄ ≤ y1 such that ψ ∈L(g(x̄), ȳ) for some ȳ > y2 and, since L(g(x̄), ȳ) =L′(x̄′, ȳ − �)

and (x′, y′)R I (x̄′, ȳ − �), the request is satisfied.
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Now, G′ is a compass structure for ϕ , and it is consistent and fulfilling. Clearly, |D′| < |D|. If |D′| is less than the claimed 
bound, we are done; otherwise, we repeat the entire process. �

A small model for HS3 is any model for a HS3 formula ϕ whose domain contains at most 2O (|ϕ|3) points. Small models are, 
evidently, exponential in length; this means that Lemma 4 proves that HS3 is decidable in non-deterministic exponential 
time. A little more work is needed to prove that, in fact, it is decidable in polynomial space. To this end, we now describe 
a non-deterministic algorithm that uses only polynomial space, and, then, we obtain the result thanks to Savitch’s Theorem 
(PSpace = NPSpace – see, e.g., [39]).

The idea underlying our polynomial-space algorithm is that we can check the satisfiability of a HS3 formula by non-
deterministically generating a model within the limits of Lemma 4 in such a way that, at any given moment, at most two 
(compass) rows are kept in memory, so that a single row must contain enough information to allow us to generate the 
next one. To this end, we need to introduce some more notation and definitions. An atom is any non-empty set F ⊆ Cl(ϕ)

such that, for every ψ ∈ Cl(ϕ), ψ ∈ F if and only if ¬ψ /∈ F , and, for every ψ ∨ ξ ∈ Cl(ϕ), either ψ ∈ F or ξ ∈ F ; in other 
words, an atom is a maximally consistent subset of Cl(ϕ) (labels on a compass structure are, in fact, atoms). We denote by 
A(ϕ) the set of all possible atoms for ϕ . For X ∈ {L, L, I}, we denote by Rϕ

X the set that contains all and only existential 
requests (that is, formulæ of the type 〈X〉ξ ) in Cl(ϕ), and, given the set Rϕ

I and any subset � of Cl(ϕ), we call observable, 
denoted by O(�), the set � ∩Rϕ

I . Intuitively, we are restricting our attention to the existential part of the requests, and, in 
particular, those along the relation R I . In order to efficiently describe a row, we define a counting tuple as a triple (R, R∗, n)

such that R ⊆ Rϕ
I , R∗ ⊆ R and n ∈ N+; a counting tuple can be seen as the realization of an element of RI L(y) along with 

its count (the number of times that it occurs in a row). Intuitively, R contains requests yet to be satisfied or satisfied at the 
row y, and R∗ contains requests already satisfied (somewhere below y in the compass structure). For us, a row abstraction is 
a word

C R = (R0, R∗
0,n0) . . . (Rm, R∗

m,nm)

of counting tuples such that: (i) (Ri, R∗
i ) �= (Ri+1, R∗

i+1); (ii) Ri ⊇ Ri+1 for every i < m, and (iii) R∗
i ⊇ R∗

i+1 for every i < m. 
The size of a given row abstraction C R is the number |C R| = ∑

0≤i≤m ni , and we access its elements as follows: we write 
C R[i] (respectively, C R∗[i]), for 0 ≤ i ≤ |C R|, to indicate the set R j (respectively, R∗

j ) such that 
∑

0<l< j nl < i ≤ ∑
0<l≤ j nl . In 

the algorithm shown in Figs. 4 and 5, C R and C R ′ are row abstractions.
Consider now the algorithm in Fig. 4. Clearly, to guarantee the completeness of the approach LI M must take the value is 

set to the theoretical bound for the dimension of any possible finite model for a given formula ϕ , as explained in Lemma 4. 
Each let step must be considered as a non-deterministic step, in which the requested object is guessed; then, the algorithm 
verifies its properties, and if any given property is not respected, the algorithm rejects (so, our algorithm may be seen as 
a PSpace verifier). The requests of the type 〈L〉 that ϕ may have are handled in the following way: f L(〈L〉ψ) represents 
an interval [z, t] on the model being built such that [z, t] satisfies ψ and that no other interval [z′, t′] does, for z′ > z; 
requests of the type 〈L〉 are handled in a symmetric way. So, our algorithm correctly guesses all requests of the type 〈L〉/〈L〉, 
and considers them satisfied within the limits given by f L and f L ; in the function Initialize, we write I(LI M) to denote all 
intervals that can be built in the set {0, . . . , LI M}. Then, a correct initial atom (F ) is guessed, and its properties must be 
checked (within the function CheckFirstAtom). Obviously, the checked formula ϕ must belong to F , which, in turn, cannot 
contain any request of the type 〈L〉, because F holds on [0, 1] (first line of the conditions for F ). Moreover, the requests of 
type 〈L〉 that are in F are precisely those satisfied anywhere to the right of [0, 1], as collected in the function f L (second 
line), and F contains, among others, those formulæ ever requested that are satisfied nowhere after (or before) [0, 1] (third 
line). Finally, to be coherent with f L , F contains no formulæ whose leftmost satisfying interval is not [0, 1] (fourth line). 
Right before the while loop, we describe the initial part of the compass structure that represent the model being guessed: 
it has only one level corresponding to y = 1, the row abstraction C R of such line contains precisely one counting tuple 
formed by non-starred requests only (nothing can be satisfied below 1). We take into account any formula ever mentioned 
on a line in the component �C R , of the requests of the type 〈L〉 in the component LC R , and of the current step (at this 
point, 0).

The compass structure is guessed row-by-row, starting with line 1 (that corresponds to the set of all intervals ending at 
the point 1). Therefore, it is easy to check if, at a given point y, we have already finished: it is enough to verify that the 
current row abstraction has no request of type 〈L〉 and that every request in every set R of a counting tuple is matched into 
its corresponding set R∗ , and therefore already satisfied. This explains the first part in the while loop. At any given step, the 
row step + 2 is being guessed, and its abstraction is called C R ′ (with set of formulæ �C R ′ ). The remaining part of the code 
deals with checking that C R ′ is a correct guess. To this end, we first set the set of its requests of type 〈L〉 as precisely those 
insisting on the last point of the line (the point row), and we use a temporary variable �∗

C R ′ initially set at ∅. Then, we 
check C R ′ . First, we check that the number of components of C R ′ is correct (that is, it is precisely one more than C R); then, 
we check C R ′ tuple-by-tuple. Consider, then, the problem of checking the correctness of the i-th tuple, that corresponds 
to the interval [i, row]. The temporary variable C R∗

pre takes the value of the set of requests already satisfied below (and 
it is empty when i = row − 1). The guess C R ′ is rejected if: either the set of requests of type 〈I〉 already satisfied is not 
equal to the set of those that were already satisfied at the same point in C R plus those that are being satisfied in the line 
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procedure HS3-Sat(ϕ, LI M)

begin
Initialize( f L , f L , LI M)

let F ∈ A(ϕ) such that CheckF irst Atom(F , f L , f L)

C R ← 〈(RF
I , ∅, 1)〉

�C R ← F
LC R ← RF

L
step ← 0
while step < LI M do

if LC R = ∅ and ∀i(0 ≤ i ≤ |C R| → C R[i] = C R∗[i]) then
return Y es

row ← step + 2
let C R ′ be a row abstraction
let �C R ′ ⊆ Cl(ϕ)

LC R ′ ← {ψ : [0, row] RL f L(ψ)}
�∗

C R ′ ← ∅,

if |C R ′| �= |C R| + 1 then
return No

for i = 0 . . . |C R ′| do
if i = |C R ′| then

C R∗
pre ← ∅

else
C R∗

pre ← C R[i]∗
if C R ′[i]∗ �= C R∗

pre ∪O(�C R ′ ∪ �C R ) then
return No

if i < |C R ′| and C R ′[i] � C R[i] then
return No

let F ∈ A(ϕ) such that CheckAtom(C R ′, f L , f L)

�∗
C R ′ ← �∗

C R ′ ∪ F

if �∗
C R ′ �= �C R ′ then
return No

C R ← C R ′
�C R ← �C R ′
step ← step + 1

return No

Fig. 4. A PSpace-algorithm for HS3 formulæ satisfiability checking.

procedure Initialize( f L , f L , LI M)

begin
let L ⊆ Rϕ

L
let f L : L → I(LI M − 1)

let L ⊆ Rϕ

L

let f L : L → I(LI M − 1)

procedure CheckF irst Atom(ϕ, f L , f L)

begin
if ϕ ∈ F ∧RF

L
= ∅

and RL(F ) = {ψ : [0, 1] RL f L(ψ)}
and F ⊇ {ψ : f L(ψ) = [0, 1] ∨ f L(ψ) = [0, 1]}
and F ∩ {ψ : ¬([0, 1] = f L(ψ))} = ∅ then

return T rue
return False

procedure CheckAtom(C R, f L , f L)

begin
if F ⊆ �C R

and ReqI (F ) = C R[i]
and RF

L
= {ψ : [i, row] R L f L(ψ)}

and RF
L = {ψ : [i, row] RL f L(ψ)}

and F ⊇ {ψ : f L(ψ) = [i, row] ∨ f L(ψ) = [i, row]}
and F ∩ {ψ : ¬([i, row] R← f L(ψ))} = ∅
and F ∩ {ψ : ¬([i, row] R→ f L(ψ))} = ∅ then

return T rue
return False

Fig. 5. Auxiliary procedures for the algorithm in Fig. 4.
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(that is, anywhere in a interval of the type [x, row] – they all intersect the interval [i, row]), or the chain of requests in 
C R ′ , at the component i in C R ′ is not a correct chain. If C R ′ , at the i-th component, has passed all above tests, then it 
only remains to be seen (guessed) which atom may occupy the label for the interval [i, row]; this is one key point to keep 
the complexity of the algorithm in PSpace: atoms are only checked to exist, but never stored. The conditions for such an 
atom F to exist are: (i) its formulæ are in �C R ′ ; (ii) its requests of type 〈I〉 are those in the i-th component of C R ′; (iii)
its requests of type 〈L〉 (respectively, 〈L〉) are precisely those formulæ whose leftmost (respectively, rightmost) satisfying 
interval is yet to be seen (respectively, has already been seen); (iv) its formulæ include those satisfied precisely at [i, row]
and never again to the left or to the right; (v) finally, its formulæ cannot contradict the functions f (e.g., F cannot witness 
a formula whose leftmost satisfying interval starts somewhere before i): for a better readability, we denote, in Fig. 4, by R←
the union of the identity relation between intervals plus the relation R X for X ∈ {E, E, D, O , A, L}, and by R→ the union of 
the identity relation between intervals plus the relation R X for X ∈ {B, B, D, O , A, L}. Now, �∗

C R ′ certainly includes F , and 
having guessed an atom for each i, the algorithm compares �∗

C R ′ (the set of all formulæ that should be on C R ′) with �C R ′ , 
and rejects if they are different.

Theorem 2. The finite satisfiability problem for HS3 is PSpace-complete.

Proof. Our procedure requires to store only two counters (row and step) and at most two row abstractions at the same 
time; therefore, it suffices to prove that they can be represented in polynomial space with respect to |ϕ|. Since none of 
the counters may exceed 2O (|ϕ|3) , clearly K = O (|ϕ|3) bits are enough to store each one of them. Now, consider a row 
abstraction

C R = (R1, R∗
1,n1), (R2, R∗

2,n2), . . .

and analyze its components. By definition, R1 ⊇ R2 ⊇ . . ., and since each Ri is a subset of Rϕ
I , in the worst case each Ri

differs from Ri−1 because it has precisely one formula less. Therefore, if we focus on the R component only, there can be 
at most 2 · |ϕ| different elements in C R . The component R∗ follows the same pattern (reversed), so that, in total, there can 
be at most 4 · |ϕ| different counting triples in a row abstraction. Each one of them requires (2 · log(|ϕ| + 1) + K ) bits to 
be represented, and the entire row abstraction requires (2 · log(|ϕ| + 1) + K ) · K bits. To such quantity, one has to add the 
space to store three instances of �C R (one for C R , one for C R ′ , and one temporary instance), each one of which requiring 
log(2 · |ϕ| + 1) bits, and the space for a single atom F , requiring, again, log(2 · |ϕ| + 1) bits. Summing up, the algorithm in 
Fig. 4 works in polynomial space. Since Theorem 1 gives us a matching lower bound, we have the claim. �

Our PSpace algorithm is impractical. Each non-deterministic choice must guess very complex objects, and atoms must be 
generated in full at the beginning of the computation, which, alone, is a very time-demanding step. In Section 6 we describe 
a possible deterministic implementation of a finite satisfiability checker for HS3, along with the result of a systematic series 
of tests.

4.4. PSpace membership: the case of natural numbers

The satisfiability problem for HS3 in the (general) discrete case, i.e., without assuming the finiteness of the models, can 
be decided using essentially the same principles as in the finite case; we give here the details for the case of N.

The most relevant difference between the finite case and the case of N lies in the problem of model representation; 
in order to define a suitable (finite) representation for infinite models based on the natural numbers, we make use of the 
technical machinery defined in Lemma 4. First, given any compass structure G = (D, L) and any index 0 < y, we denote 
G|y = ({y ∈D : y < y}, L|y), where L|y is the labeling function defined as L|y(x, y) =L(x, y) for every 0 ≤ x < y ≤ y, the y
prefix of G . It is essential to understand that stepping from G to G|y may have the effect of changing the content of row(y)

for some y ≤ y: indeed, requests that were satisfied in G might not be satisfied anymore in G|y . Therefore, we denote by 
row|y(y) the value of the function row at y in the reduced compass structure G|y . A finite compass structure G based on a 
domain D = {0, . . . , ymax} is said to be pseudo-fulfilling if there exist two points y < y < ymax such that (i) row(y) = row(y), 
(ii) for every 0 ≤ x ≤ y and for every ψ ∈ RI (x, y), there exists 0 ≤ x′ ≤ y and 0 ≤ y′ ≤ y such that ψ ∈ L(x′, y′), (iii) for 
every ψ ∈ RL(x, y) there exists y < x′ < y′ < y such that ψ ∈ L(x′, y′), and (iv) row|y(y) = row(y). The key point is that 
a pseudo-fulfilling structure is self-contained, so that every existential request originated on intervals that end before or at 
y, are satisfied on intervals that end before or at y; notice, however, that the position of ymax plays an essential role in 
satisfying the last condition: even if conditions from (i) to (iii) are satisfied, a structure is pseudo-fulfilling only if, ideally, 
the portion of the model between y and y can be replicated infinitely often. Proving that HS3 is decidable in PSpace when 
interpreted over N requires three steps: first, proving that a model exists if and only if a pseudo-fulfilling structure (with ϕ
in the label of the interval [0, 1]) does, second, that we can effectively bound the maximum cardinality of a pseudo-fulfilling 
structure, and, third, that checking the existence of a pseudo-model can be done in PSpace. The first two steps are dealt 
with in Lemma 5 below, which is focused on the precise bound given that proving that pseudo-fulfilling structures can be 
converted into models is not essentially different from the proof of Lemma 4 (although a notion of periodicity is involved); 
as far as the third step is concerned, a simple modification of the algorithm in Fig. 4 is sufficient.
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Lemma 5. Let ϕ be a HS3 formula satisfiable over N. Then there exists a pseudo-fulfilling structure for ϕ with domain D of cardinality 
2O (|ϕ|3) .

Proof. Since ϕ is satisfiable over N there exists a compass structure G = (N, L) for it. We want to prove that there exists a 
bounded pseudo-fulfilling structure that describes it.

Definitions. Since the set of possible different row descriptions is finite, we take the smallest y ∈ N such that for every 
y′ ∈ N there exists y′′ > y′ with row(y) = row(y′′) (that is, the smallest y such that its own description repeats infinitely 
often). Then, we choose y > y in such a way that for every 0 ≤ x ≤ y and for every ψ ∈ S(x, y) there exists x′ ≤ x and 
y < y′ ≤ y with ψ ∈ L(x′, y′), and for every ψ ∈ RL(y) there exists y < x′ < y′ ≤ y with ψ ∈ L(x′, y′). In an identical way, 
we can also choose ymax > y as the smallest index such that 0 ≤ x ≤ y and for every ψ ∈ S(x, y) there exists x′ ≤ x and 
y < y′ ≤ ymax with ψ ∈ L(x′, y′), and for every ψ ∈ RL(y) there exists y < x′ < y′ ≤ ymax with ψ ∈ L(x′, y′). Observe that 
row(y)|ymax = row(y) and row(y)|ymax = row(y); so, Gymax is a pseudo-fulfilling structure (and ϕ ∈L(0, 1)), and we have to 
prove that we can contract it within the given bound.

Contraction. Given two points ŷ, ŷ′ , we define

O cc( ŷ, ŷ′) = {ψ : there are x, y′ such that 0 ≤ x ≤ ŷ < y′ < ŷ′
and ψ ∈ L(x, y′)}.

By construction, O cc(y, y) = O cc(y, ymax). As in Lemma 4, we can identify, for each ψ ∈ O cc(y, y) four points (z∗, t∗) with 
∗ ∈ {right , le f t, up, down} and ψ ∈ L(z∗, t∗), z∗ ≤ y, and t∗ ≤ y, as follows: for every (z′, t′), if ψ ∈ L(z′, t′), z′ < y, and 
y ≤ t′ < y, then zlef t ≤ z′ ≤ zright and tdown ≤ t′ ≤ tup . In other words, the points (z∗, t∗) with ∗ ∈ {right, le f t, up, down}
are, respectively, the rightmost, leftmost, highest, and lowest witnesses of each formula in O cc(y, y). We collect all co-
ordinates of the type z∗ so defined in a set V er(ψ, y, y), and all coordinates of the type t∗ in a set Hor(ψ, y, y). In a 
similar way, we define the sets V er(ψ, y, ymax) and Hor(ψ, y) for each ψ ∈ O cc(y, ymax). Clearly, for each ŷ′ , and each 
pair ψ, ŷ, it is the case that both |V er(ψ, ŷ, ŷ′)|, |Hor(ψ, ŷ, ŷ′)| ≤ 4. We can now identify a set V b ⊆ {x : 0 ≤ x ≤ ymax} of 
blocked verticals, which is a minimal set that satisfies the following conditions: (i) V er(ψ, y, y) ∪ V er(ψ, y, ymax) ⊆ V b for 
every ψ ∈ O cc(y, y); and, for every (R, L) ∈ dom(count(y)), (ii) if count(y)(R, L) < 4 · |ϕ| + 1 then |{x ∈ V b : RI L(x, y) =
R and S(x, y) = L}| = |{x ∈ V b : RI L(x, y) = R and S(x, y) = L}| = count(y)(R, L), and (iii) if count(y)(R, L) ≥ 4 · |ϕ| + 1
then |{x ∈ V b : RI L(x, y) = R and S(x, y) = L}| = |{x ∈ V b : RI L(x, y) = R and S(x, y) = L}| = 4 · |ϕ| + 1. Observe that 
|V b| < 2 · |ϕ|(4 · |ϕ| + 1). Moreover, we can identify a set Hb ⊆ {y′ : 0 ≤ y ≤ ymax} of blocked horizontals, which as a min-
imal set that satisfies the following conditions: (i) Hor(ψ, y, y) ∪ rows(ψ, y, ymax) ⊆ Hb for every ψ ∈ O cc(y, y), and (ii)
{0, y, y, ymax} ⊆ Hb. Observe that |Hb| ≤ 2 · |ϕ| + 4. For every row 0 ≤ y ≤ ymax we can now define an additional counting 
function countV (y) :RI L(y) × �y → {1, . . . , 2 · |ϕ| · (4 · |ϕ| + 1)} such that, for every (R, L) ∈RI L(y) × �y ,

countV (y)(R, L) = |{x : RI L(x, y) = R and S(x, y) = L}|.
Similarly to Lemma 4, we conclude that the number of possible countV (y) functions is (2 · |ϕ|(4 · |ϕ| + 1))|ϕ|2 =
2|ϕ|2·log(2·|ϕ|·(4·|ϕ|+1)) . Now, consider two rows 0 ≤ ŷ < ŷ′ ≤ ymax such that for every pair y′ < y′′ ∈ Hb we have y′′ < ŷ or 
ŷ′ < y′′ or y′ < ŷ < ŷ′ < y′′ , that is, consider two rows ŷ and ŷ′ strictly contained between two consecutive elements in Hb. 
If row( ŷ) = row( ŷ′) and countV ( ŷ) = countV ( ŷ′), then we can directly apply Lemma 4 and obtain a smaller structure G′ , 
which is, still, pseudo-fulling. If Gymax is based on a domain D, then G is based on a domain D′ such that |D′| = |D| −( ŷ′− ŷ). 
But two rows ŷ < ŷ′ with the required properties are guaranteed to exist whenever the number of rows strictly contained 
between any two consecutive elements y′ < y′′ in Hb is greater than or equal to

N� = |ϕ| · 2|ϕ|·(|ϕ|·log(2·|ϕ|·(4·|ϕ|+1))+log(4·|ϕ|+1)+log(|ϕ|)+|ϕ|).
We can then iterate the contraction until y′′ − y′ < N� for every two consecutive elements y′ < y′′ . The pseudo-fulfilling 
structure obtained at the end of this process has cardinality less than or equal to

|Hb| · N� = (2 · |ϕ| + 4) · |ϕ| · 2|ϕ|·(|ϕ|·log(2·|ϕ|·(4·|ϕ|+1))+log(4·|ϕ|+1)+log(|ϕ|)+|ϕ|) = 2O (|ϕ|3),

as we wanted.
The pseudo-fulfilling structure obtained in this way can be now transformed into a compass structure based on the 

natural numbers, and therefore a model based on the natural numbers, by applying essentially the same technique already 
seen in Lemma 4. �

Dealing with the satisfiability of formulæ of HS3 interpreted over the set of the integers does not require any mathe-
matical tool different from those used above; the notion of pseudo-fulfilling structures can be generalized to be symmetric 
on the interval [0, 1], and its limits suitably re-computed. Then, Lemma 5 works in the same way to prove its existence. 
A similar argument can be used to show that deciding the satisfiability of a formula of HS3 interpreted in the class Dis of 
all discrete linear orders has the same computational properties.
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Theorem 3. The satisfiability problem for HS3 in the case of natural numbers, in the case of the integers, and in the case of Dis is
PSpace-complete.

5. HS7 is undecidable

In this section we show that the satisfiability problem for HS7, interpreted in any class of linearly ordered set that 
contains at least one infinite order, is undecidable; all finite/discrete cases were already covered by the results in [30]. 
Undecidability is proven via a reduction from the so-called Octant Tiling Problem (OTP) (as, for example, in [13]). This is the 
problem of establishing whether a given finite set of tile types T = {τ1, . . . , τN } can tile the second octant of the integer 
plane O = {(n, m) ∈ Z2 : 0 ≤ n ≤ m}. For every tile type τ ∈ T , let right(τ ), le f t(τ ), up(τ ), and down(τ ) be the colors 
of the corresponding sides of τ . To solve the problem, one must find a function f : O → T such that right( f (n, m)) =
le f t( f (n + 1, m)) and up( f (n, m)) = down( f (n, m + 1)). A simple application of König Lemma and of the Compactness 
Theorem for first-order logic allows one to prove that the OTP is undecidable; a similar argument is used in [11] to prove 
the undecidability of the Quadrant Tiling Problem.

In the following we reduce the OTP to the satisfiability problem for HS7. Our construction is similar to other unde-
cidability reductions for interval temporal and spatial logics [31,13], which, however, must be adapted due to the loss of 
expressive power of coarser operators. The reduction exploits (i) a correspondence between the points (x, y) of the octant 
and a suitable set of unit intervals (u-intervals from now on) labeled by the propositional letter u; (ii) propositional vari-
ables to represent tiles in T ; (iii) the modal operators of HS7 to enforce the constraints of the problem. The starting point 
of our construction consists of building an infinite sequence of u-intervals. Let ϕuchain be the following formula:

ϕuchain = u0 ∧
∧

l=0,1

[G](ul → 〈A O 〉u(l+1) mod 2) (8)

∧ [G](u ↔ (u0 ∨ u1)) (9)

∧ [G](u → [D B E]¬u) (10)

∧
∧

l=0,1

[G](ul → [D B E]u′
l) (11)

∧ [G]((u′
0 ∧ u′

1) → ⊥). (12)

Lemma 6. Let M, [x, y] � ϕuchain . Then, there exists an infinite increasing sequence of points y0, y1, y2, . . . such that

(i) y0 = y;
(ii) for each i ≥ 0, M, [yi, yi+1] � u;

(iii) if [z, t] �= [yi, yi+1], for each i ≥ 0, then M, [z, t] � ¬u, unless t ≤ x or z > yi for each i ∈N.

Proof. By hypothesis, M, [x, y] � ϕuchain ; therefore, M, [x, y] � u0. Because of (8) there must be an interval [y0, y1] such 
that M, [y0, y1] � u1, and that x < y0 ≤ y. To prove (i) we suppose, for the sake of contradiction, that y0 < y. By (11) we 
obtain M, [y0, y] � u′

0 and also M, [y0, y] � u′
1, contrary to (12). Consequently, y = y0. Following the same argument and 

taking (9) into account, one immediately sees that ϕuchain forces the existence of a chain y = y0 < y1 < y2 . . . of u-intervals 
verifying (ii). Suppose now, for the sake of contradiction, that M, [z, t] � u for some [z, t] �= [yi, yi+1] for all i ∈ N, where 
t > x and z < yi for some i ∈ N. Let us analyze all possible cases that may occur. If yi ≤ z < t ≤ yi+1 for some i ∈ N, 
or x ≤ z < t ≤ y0, then we have a contradiction with (10), because [z, t] is a u-interval contained (via R D B E ) in another 
u-interval, [yi, yi+1] or [x, y0]. If yi ≤ z < yi+1 and t ≥ yi+k for some i, k ∈ N and k > 1, or x ≤ z < y0 and t ≥ y1, then we 
have, again, a violation of (10). If yi ≤ z < yi+1 and yi+1 < t < yi+2, or x ≤ z < y0 and y0 < y < y1, then, thanks to (9), 
either M, [z, t] � u0 or M, [z, t] � u1. Assume that [yi, yi+1] is a u0-interval: in the first case, we have a contradiction with 
(12) because [yi+1, t] is both a u′

0-interval and a u′
1-interval, while in the second case we have a contradiction because 

[z, yi+1], in turn, is both a u′
0-interval and a u′

1-interval. If [yi, yi+1] is a u1-interval, then the symmetric argument applies. 
If t > yi for each i ∈ N, then, since by the hypothesis z < yi for some i ∈ N, we have a contradiction with (10). Finally, if 
z < x, then t < y0 because of (10). Thanks to (9), M, [z, t] � u0 or M, [z, t] � u1. In the first case, (8) ensures the existence 
of a u1-interval that will cause a conflict with the u0-interval [x, y0]. Otherwise, since x < t , the interval [x, t] satisfies u′

0
and u′

1, which, again, is a contradiction. �
By the following formula, which we call ϕube , we can easily identify those intervals that start and those that end

u-intervals:

ϕube = [G](u → (〈D B E〉� ∧ [D B E]u′) (13)

∧ [G]((u′ ∧ [A O ]¬u) → ub) (14)
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∧ [G]((u′ ∧ [A O ]¬u) → ue) (15)

∧ [G](ub → [A O ]¬u) (16)

∧ [G](ue → [A O ]¬u). (17)

Lemma 7. Let M, [x, y] � ϕuchain ∧ ϕube , and let y0, y1, y2, . . . be the infinite sequence of points whose existence is guaranteed by 
Lemma 6.

(i) For each i ≥ 0, every interval of the form [yi, z], where z < yi+1 , satisfies ub but not ue (and there exists at least one interval of 
this form);

(ii) For each i ≥ 0, every interval of the form [z, yi+1], where z > yi , satisfies ue but not ub (and there exists at least one interval of 
this form).

Proof. Consider, first, a u-interval [yi, yi+1] of the sequence, and a point z such that yi < z < yi+1. Such z exists thanks to 
(13). Also by (13), the interval [yi, z] is certainly a u′-interval; since, by Lemma 6, that neither [z, t] for any z < t < yi+1, 
nor any [t′, t] for any yi < t′ < z, can be a u-interval, (14) applies, and [yi, z] must be a ub-interval. Since [yi−1, yi] is 
u-interval, (17) applies, and [yi, z] cannot be a ue-interval, proving (i). Point (ii) is proven likewise.

Consider now the following formula, in which L = {∗} ∪ T (we abuse of notation and identify tile symbols with the 
propositional letters that represent them):

ϕconf = C0 ∧
∧

l=0,1

[G](Cl → 〈A O 〉C(l+1) mod 2) (18)

∧ [G](C ↔ (C0 ∨ C1)) (19)

∧
∧

l=0,1

[G](Cl → [D B E]C ′
l ) (20)

∧ [G]((C ′
0 ∧ C ′

1) → ⊥) (21)

∧ [G](C → ([A O ]¬ue ∧ [A O ]¬ub)) (22)

∧ [G](C → ([D B E]¬C ∧ 〈D B E〉�)) (23)

∧ [G](u ↔
∨
s∈L

s)) (24)

∧ [G]
∧

s,s′∈L,s �=s′
(s ∧ s′ → ⊥) (25)

∧ 〈A O 〉(∗ ∧ 〈A O 〉(
∨
τ∈T

τ ∧ 〈A O 〉∗)) (26)

∧ [G]((u ∧ 〈A O 〉C) → 〈A O 〉∗) (27)

∧ [G]((u ∧ 〈A O 〉C) → 〈A O 〉∗) (28)

∧ [G](∗ → (〈A O 〉C ∨ 〈A O 〉C). (29)

Lemma 8. Let M, [x, y] � ϕuchain ∧ϕube ∧ϕconf , and let y0, y1, y2, . . . be the infinite sequence of points whose existence is guaranteed 
by Lemma 6. Then there exists an infinite sequence of indexes k0, k1, k2, . . . such that

(i) each u-interval of the type [yi, yi+1] satisfies precisely one letter in L;
(ii) for each j ≥ 0, M, [yk j , yk j+1 ] � C;

(iii) the C-interval [yk0 , yk1 ] is composed of exactly three units, the middle one of which is τ ∈ T ;
(iv) if [z, t] �= [yk j , yk j+1 ] for each j ≥ 0, then M, [z, t] � ¬C , unless t ≤ x or z > yi for each i ∈N;
(v) each C-interval of the type [yk j , yk j+1 ] is such that both its first unit [yk j , yk j+1] and its last unit [yk j+1−1, yk j+1 ] satisfy ∗;

(vi) if [z, t] �= [yk j , yk j+1] and [z, t] �= [yk j+1−1, yk j+1 ] for each j ≥ 0, then M, [z, t] � ¬∗, unless t ≤ x or z > yi for each i ∈N.

Proof. Point (i) is an immediate consequence of (24) and (25). Since M, [x, y] � C0 by (18), there must be an interval [z, t]
such that x < z ≤ y and t > y such that M, [z, t] � C1. Suppose, for the sake of contradiction, that z < y. By (20), we obtain 
M, [z, y] � C ′

0 and also M, [z, y] � C ′
1, contrary to (21). Therefore z = y = y0, and we set k0 = 0. Now we prove (iii), i.e., 

t = y3 = yk1 . First, note that (22), in combination with Lemma 7, avoids that yi < t < yi+1 for any i ∈ N. Formulæ (24) and 
(26) imply that [y0, y1], [y1, y2], and [y2, y3] are, respectively, ∗-, τ -, and ∗-intervals, for some tile τ . Therefore, t = y1
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Fig. 6. A model of ϕT and its interpretation as a tiling of the second octant.

contradicts (27) and t = y2 contradicts (28), because of (i); applying (29), (19), (20), and (21) to [y2, y3], it is easy to see 
that t > y3 is not possible. Then, yk1 = y3 = t . By a similar argument, one can prove the existence of an infinite chain of 
indexes k0, k1, . . . as stated in (ii) and (iv). Formulæ (27) and (28) immediately imply (v). Finally, in order to prove (vi), it 
suffices to observe that, first, ∗-intervals can only be units, and, second, that, thanks to (29), a ∗-interval on some interval 
[yi−1, yi] for some i implies that yi−1 ends a C-interval or yi starts a C-interval. Thus, if, for the sake of contradiction, [z, t]
is a ∗-interval different from the first or the last unit of a C-interval, we have a contradiction with point (iv).

Given the structure built in Lemma 8, we can refer to the m-th ¬∗-interval of a level C as the m-th tile of that level, 
and we are therefore interested in connecting the m-th tile of a given level with the m-th tile of the next one. In particular, 
we say that the tile [z, t] is connected to the tile [z′, t′] if and only if the interval [t, z′] is a Corr-interval, where Corr is a 
propositional letter introduced in the following formula:

ϕcorr = [G](u ∧ ¬∗ → 〈A O 〉Corr) (30)

∧ [G]((u ∧ ¬ ∗ ∧[A O ]¬∗) → 〈A O 〉Corr) (31)

∧ [G](Corr → [A O ]¬ue) (32)

∧ [G](Corr → [A O ]¬ub) (33)

∧ [G](∗ → [A O ]¬Corr) (34)

∧ [G]((u ∧ 〈A O 〉∗) → [A O ]¬Corr) (35)

∧ [G](Corr → ([D B E]¬Corr ∧ [D B E]¬C

∧[D B E]¬C ∧ ¬C)). (36)

Lemma 9. Let M, [x, y] � ϕuchain ∧ ϕube ∧ ϕconf ∧ ϕcorr , let y0, y1, y2, . . . be the infinite sequence of points whose existence is guar-
anteed by Lemma 6, and let k0, k1, k2 . . . be the infinite sequence of indexes whose existence is guaranteed by Lemma 8.

(i) For each i, j ≥ 0, if the interval [yk j+i, yk j+i+1] is a ¬∗-interval, then the point yk j+i+1 starts a Corr-interval;
(ii) For each i, j > 0, if the interval [yk j+i+1, yk j+i+2] is a ¬∗-interval, then the point yk j+i ends a Corr-interval;

(iii) If [z, t] �= [yi, ym] for each i, m ≥ 0, then M, [z, t] � ¬Corr, unless t ≤ x or z > yi for each i ∈N;
(iv) For each j > 0, none of the points yk j , yk j−1 , and yk j−2 finish any Corr-interval;
(v) The m-th tile of every level is connected to the m-th tile of the next level, and, if the level is not the first one and m is not the index 

of the last tile of a level, the m-th tile is also connected to the m-th tile of the preceding level;
(vi) Every level has precisely as many tiles as the preceding level plus one.

Proof. Reasoning as in Lemma 7, point (i) is an immediate consequence of (30) and (33), and point (ii) is an immedi-
ate consequence of (31) applied to the interval [yk j+i, yk j+i+1]. To prove (iii), observe that (32) and (33) mandate that 
Corr-intervals begin and end on points of the type yi . As far as (iv) is concerned, it turns out that neither yk j or yk j−1
may end a Corr-interval because of (34), and yk j−2 may not, either, because of (35). A combinatorial argument, whose cor-
nerstone is (36), proves now (v) and (vi). As a matter of fact, Corr-intervals that start at a given tile cannot end within the 
same C-interval or after the next C-interval (thanks to (36)). But then, it is easy to observe that if the m-th tile of a certain 
C-interval is connected with the l-th tile (l �= m) of the next C-interval one has a contradiction, again, with (36). Finally, 
thanks to (iv), the last tile of every C-interval cannot be connected to any tile of the previous C-interval, completing the 
argument.

We complete our construction (pictured in Fig. 6) by forcing that the tiling constraints are respected. Let ϕcolor be the 
following formula:
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ϕcolor =
∧
τ∈T

[G](τ → [A O ](Corr → 〈A O 〉(
∨

τ ′∈T ,up(τ )=down(τ ′)
τ ′))) (37)

∧
∧
τ∈T

[G]((τ ∧ [A O ]¬∗) → [A O ](
∨

τ ′∈T ,right(τ )=le f t(τ ′)
τ ′)). (38)

Lemma 10. The satisfiability problem for HS7 interpreted over any class of linear frames that contains at least one infinitely ascending 
order can be reduced to the OTP.

Proof. Let T be an instance of the OTP, and let

ϕT = ϕuchain ∧ ϕube ∧ ϕconf ∧ ϕcorr ∧ ϕcolor .

Suppose, first, that M, [x, y] � ϕT , where M is a model whose frame belongs to the class of linear frames. By Lemma 8, 
the point y = y0 starts a first level of three units, containing precisely one tile. By Lemma 9, each successive level contains 
precisely one more tile than the preceding one, and, by (37) and (38), each m-th tile respects the horizontal constraint with 
the m + 1-th tile (if exists), and the vertical constraint with the m-th tile of the successive level. Therefore, M represents a 
correct tiling of the second octant, and, in summary, the fact that ϕT is satisfiable (for a given set of tiles T ) implies that 
the OTP has a solution (for that specific set T ). On the contrary, given a solution to the OTP, it is immediate to build a 
model for ϕT by simply placing every tile in its correct position on each level, and suitably filling up the model with the 
evaluation of ∗, C , and Corr. In other words, for a given set T , T tiles the second octant if and only if ϕT is satisfiable. �
Theorem 4. The satisfiability problem for HS7 interpreted in the class Fin, Dis, N, Z, Q, R, and Lin, is undecidable.

Proof. The class of all finite linear orders is covered by [30]. By Lemma 10, the satisfiability problem for HS7 in every other 
case can be reduced to the OTP, and therefore it is undecidable as well. �
6. Experimental results

The results of Section 4 imply that we can implement a relatively efficient finite satisfiability checker for HS3. In this 
section, we describe the data structures, the implementation strategies, and the policies we have used; most of the ideas 
can be also used to implement a satisfiability checker for the case of natural numbers, and, in general, for the discrete case.

Implemented decision procedures for interval temporal logics are not common in the literature. Among the few ex-
ceptions, a procedure for the fragment A of HS has been implemented in [16,23]; the former is an experimental imple-
mentation not aimed to computational efficiency, and the latter is an attempt to use an automatic tableaux generator, 
namely MetTeL

2 [43]. The only previous attempt to apply a generic theorem prover to an interval temporal logic can be 
found in [18], where a tableau-based decision procedure for the fragment D, interpreted over dense linear orders, was de-
veloped in LoTREC [24]. Unfortunately, there are no benchmark problems for satisfiability of interval logic formulæ, which 
makes it difficult to compare different implementations.

6.1. Implementation

We have chosen to develop a semantic tableau satisfiability checker for HS3. Both the tableau and the formula to be 
checked are represented as rooted decorated trees. A rooted tree is a tree G = (V , E, r), where V is a nonempty set, E ⊆
V × V , |E| = |V | − 1, and r ∈ V is its root; every element of V is called a node. A rooted decorated tree [27] is a rooted 
tree enriched with a function that associates every node with its decoration, which can be thought of as the information 
carried by that node: when we represent formulæ, a decoration is a propositional letter or an operator, while when we 
represent semantic tableaux, a decoration consists of the information needed to expand the tableau or to close it. In any 
(rooted decorated) tree, nodes without successors are called leaves, and every finite path from the root to a leaf is called a 
branch.

Formulæ are represented as binary rooted decorated trees. Each node of the tree is decorated with a code that represents 
a Boolean or a modal operator or a propositional letter. Formulæ are read and contextually represented as trees; a simple 
recursive procedure eliminates all implications and pushes all negations in front of propositional letters, obtaining equivalent 
formulæ in negated normal form. Moreover, before checking its satisfiability, our procedure transforms a formula ϕ into the 
formula ϕ ∨ 〈L〉ϕ ∨ 〈I〉ϕ , whose initial satisfiability is checked (see Section 4).

A tableau is represented as a k-ary tree in the form of left-child right-sibling. Each node of this tree contains a pointer to 
the node in the formula tree that represents the sub-formula under analysis, the interval over which it holds, an active/in-
active flag, a leaf/internal flag, and the pointers to the left child, the right sibling, and the parent. Domains are represented 
as totally ordered sets of floating point numbers, so that an interval is a pair of floats. This has a very specific purpose: 
whenever a new point must be added in between a pair of already existing ones, it can be created by simply computing 
their average; yet, the model remains always finite by construction. Some tableau nodes are leaves during the construction 
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Table 2
Expansion rules of the semantic tableau-based procedure.

ψ ∨ τ , [x, y],D
ψ, [x, y],D | τ , [x, y],D

ψ ∧ τ , [x, y],D
ψ, [x, y],D
τ , [x, y],D

〈X〉ψ, [x, y],D
ψ, [x1, y1],D1 | . . . | ψ, [xn, yn],Dn

where

⎧⎨
⎩

n = ν♦(X, [x, y],D)

Di = μ♦(i, X, [x, y],D)

[x j , y j ] = λ♦( j, X, [x, y],D)

[X]ψ, [x, y],D
ψ, [x1, y1],D
ψ, [x2, y2],D

. . .

ψ, [xm, ym],D

where

{
m = ν�(X, [x, y],D)

[x j , y j ] = λ�( j, X, [x, y],D)

of the tableau; they (temporally) represent their branch, so that they also store domain information, plus other data that 
help us choosing the next branch depending on the expansion policy.

In addition to the two trees (a formula tree and a tableau tree – the former is fixed during the satisfiability checking 
process of a given formula, the latter evolves), there are additional data structures that help us to apply the tableau ex-
pansion rules. In particular, the collection of all current leaves is stored in a linked list. Each element of the list points to 
the tableau node that represents that leaf (and therefore its branch) which may be chosen in the next expansion step. A 
non-trivial adaptation of a generic tree visit algorithm must be implemented in order to correctly identify, given a tableau 
node, the set of all and only those leaves that belong to the sub-tree rooted at it. Finally, a dynamic data structure is built 
(and destroyed) before each expansion step that allows us to examine the branch on which the next to-be-expanded tableau 
node lies, in order to establish if the branch is closed (because it is contradictory), or it represents a model (in which case 
the procedure stops and returns that the given formula is satisfiable). Such a structure may be thought of as a hash table 
that contains the intervals and the formulæ that are (currently) true on them, with an efficient (constant time) lookup 
method.

The initial tableau for a formula ϕ whose initial satisfiability must be checked is a tableau tree composed of a single 
tableau node with the following decoration: its formula node pointer has the address of the root of the formula tree that 
represents ϕ , its interval is [0, 1], its active flag and its leaf flag are both 1, its domain is {0, 1}, and all the other pointers are 
null. Given a leaf of the current tableau (that is, the branch represented by it), the following two operations are performed: 
(i) branch closing checking and branch model checking, and (ii) choosing the next to-be-expanded tableau node. Assuming 
that the current branch B is not closed and is not a model, the next to-be-expanded tableau node is chosen according to 
the following policy: it is the active node on B that is closest to the root. Expansion rules are described in Table 2. Boolean 
rules are standard, while the rules for modal operators are designed as follows. Let I be the set of all intervals in any finite 
domain. As for the existential cases, we define a function

ν♦ : {I, L, L} × I× Fin →N,

with the following meaning. Given an interval [x, y] and a domain D, ν♦(X, [x, y], D) returns the number of already existing 
different intervals in the relation R X with [x, y] plus the number of new intervals that should be created in the relation 
R X in order to explore all qualitatively distinct possibilities. For example, ν♦(L, [0, 1], {0, 1, 2}) = 5: indeed, if 〈L〉ψ holds 
on [0, 1] and the current domain is {0, 1, 2}, then ψ may hold on some interval [1.25, 1.75], [1.5, 2], [2, 2.5], [3, 4], or 
[1.5, 2.5]. Notice that, for example, adding [1.25, 1.75] is necessary as it represents a new interval completely between 
existing points; something similar happens for [3, 4], because 〈L〉ψ holding on [0, 1] may be satisfied by a new interval 
starting after the point 2. Similarly, as for the universal case, we define a function ν� , with the same parameters, that 
returns only the number of already existing different intervals in the relation R X with [x, y] (indeed, in order to expand 
a universal modality, no new intervals are created). Moreover, expanding an existential modality may require that some 
branch have a new (bigger) domain (because, as we have seen above, existential modalities may require new points); the 
i-th domain (in no particular order) is returned by the function

μ♦ : N× {I, L, L} × I× Fin → Fin.

Finally, while expanding any existential modality, every new node in a branch is decorated with an interval that belongs to 
the (possibly new) domain. The j-th interval (in no particular order) of the expansion is returned by the function

λ♦ : N× {I, L, L} × I× Fin → I.

Following up with the previous example, μ♦(1, L, [0, 1], {0, 1, 2}) = {0, 1, 1.25, 1.75, 2} and λ♦(1, L, [0, 1], {0, 1, 2}) =
[1.25, 1.75]. Because we are restricting ourselves to initial satisfiability, these functions never return domains or intervals 
with new points between 0 and 1, nor smaller than 0. In this way for each existential operator 〈X〉ψ we have an existential 
disjunctive rule that creates enough branches to search for every possible location of ψ . Universal operators are easier to 
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treat: given the current interval and the current domain, we use the function λ� , analogous to the previous one, to obtain 
all intervals on which a formula must be applied, and since universal operators do not add points to the domain, the latter, 
as we have already observed, does not change.

Given the node to be expanded, the correct rule is chosen for its expansion (clearly, precisely one rule can be applied 
on it); the result of such a step is applied to all leaves in the sub-tree rooted at the chosen node. For efficiency reasons, dec-
orations are never duplicated. A given branch B , identified by its leaf, is closed if one of the following two conditions hold: 
a propositional contradiction is found on it, that is, there exist two nodes on B such that their decorations show p, [x, y]
and ¬p, [x, y], respectively, or the cardinality of the domain in the decoration of its leaf exceeds the bound (see Lemma 4). 
When a given leaf is selected for the next expansion step, the branch that contains it is checked for contradictions. If a 
contradiction is found, the leaf is simply eliminated from the list of leaves; if all leaves are eliminated, then the formula is 
found unsatisfiable. Otherwise, the node is expanded and the protocol for managing active/inactive flags, after every expan-
sion, is as follows: nodes are inactivated after being expanded, but in case of universal nodes, they are copied at the end of 
the branch with the active flag at 1. Therefore, the current branch B is a model if and only if, for every active node on B , 
that node is universal, and, if D is in the decoration of its leaf, then, for every [X]ψ, [x, y] in the decoration of some node 
of B there exists a node with ψ, [x j, y j] in B , for every 1 ≤ j ≤ ν�(X, [x, y], D).

The soundness and the completeness of our procedure are shown in the following result.

Theorem 5. A formula ϕ of HS3 is finitely satisfiable if and only if the tableau-based method, with the rules in Table 2, returns 
‘Satisfiable’.

Proof. Let us introduce first the following notion. Consider a node n on a tableau for a formula ϕ , and let S(n) be the 
set of all decorations on nodes between n and the root. We denote with D(n) the domain in the decoration of n. We say 
that S(n) is satisfied on an extension of D(n) if there exists a model M based on some extension of D(n) such that, for each 
(ψ, [x, y]) ∈ S(n) it is the case that M, [x, y] � ψ .

We now show that for every finitely satisfiable formula of HS3 the presented method terminates and returns ‘Satisfiable’, 
that is, contra-positively, whenever the procedure closes all branches, the formula is not finitely satisfiable. To do so, we 
prove a stronger claim: for any node n at height h on a tableau for ϕ , if every branch that contains n is closed, then 
S(n) is not satisfied on any extension D′ of D(n) such that |D′| ≤ LI M (where LI M is the maximum number of points 
on a domain as shown in Lemma 4). Notice that, when n is the root, this is to say that ϕ is not finitely satisfiable. We 
proceed now to prove the claim by induction. If h = 0, either the only branch that contains n also contains two nodes with 
decorations (p, [x, y]) and (¬p, [x, y]), and therefore S(n) is simply not satisfiable, or the number of points ever named in 
the decorations of its nodes is more than LI M , for which S(n) can never be satisfied on any extension of D(n). If h > 0, 
then n has been expanded by some rule, some nodes n1, n2, . . . exist that are descendants of n, and the inductive hypothesis 
applies to all of them. If the rule that has been applied is Boolean, then the claim follows immediately. If it is the universal 
rule, then suppose that ([X]ψ, [x, y]) is in the decoration of n. Every branch that contains n also contains all nodes that 
are the result of its expansion, and, in particular, some node n′ with decoration (ψ, [z, t]) for some interval [z, t] such that 
[x, y]R X [z, t]. If S(n) were satisfiable on some extension of D(n), then, in particular, S(n) ∪{(ψ, [z, t])} = S(n′) would be too, 
but this is in contradiction with the inductive hypothesis. Finally, if it is the existential rule, then suppose that (〈X〉ψ, [x, y])
is in the decoration of n. If S(n) were satisfiable on some extension of D(n), then there would be a model whose domain 
extends D(n) such that it satisfies 〈X〉ψ on [x, y] and ψ on some [z, t] such that [x, y]R X [z, t]. By construction, there must 
be some successor n′ of n that contains the decoration (ψ, [z, t]), independently of z, t being already in D(n). This means 
that S(n′) would be satisfiable on some extension of D(n′), which is in contradiction with the inductive hypothesis.

Now, we must argue that our method is also sound, that is, for every formula ϕ of HS3 for which it returns ‘Satisfiable’, 
there exists a model M such that M, [0, 1] � ϕ . Consider a branch B such that it is not contradictory, all its active nodes are 
universal, and every node with universal decoration has been already expanded on every possible interval of the domain 
D of the branch. Now, let M be a model based on D, and whose valuation function is defined as follows: for each interval 
[x, y] and each propositional letter p, [x, y] ∈ V (p) if and only if (p, [x, y]) decorates some node on B . We want to prove, 
by structural induction, that, for each node n in B with decoration (ψ, [x, y]), M, [x, y] � ψ . If ψ is a propositional letter or 
its negation, we have the result immediately. If ψ is a composite formula, two cases arise: either it is a universal formula, 
or it is not. In the latter case, the fact that B is not closed implies that n has been expanded, and such expansion has 
been applied to all branches that contain n: if ψ is a conjunction, then both conjuncts have been included as decorations in 
nodes of B , if it is a disjunction then at least one disjunct has been included as decoration in some node of B , and, if it is 
ψ = 〈X〉ξ , then at least one node in B must be decorated with (ξ, [z, t]), for some [z, t] such that [x, y]R X [z, t]. In all cases, 
the inductive hypothesis applies, and therefore M must satisfy ψ on [x, y]. In the former case, if ψ is a universal formula, 
i.e. ψ = [X]ξ , since B cannot be further extended, it must be the case that a node n′ with decoration (ξ, [z, t]) occurs in B
for each [z, t] such that z, t ∈D and that [x, y]R X [z, t], and again, the inductive hypothesis applies. �
6.2. Benchmark and experimental results

Our procedure is programmed object-oriented in C++ standard language with threads capabilities. Threads are run vir-
tually in parallel, and carry a specific policy for choosing the next leaf to be examined. Each policy is fair, that is, every 
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Table 3
A benchmark for (finitely) satisfiable formulæ of HS3.

Finitely satisfiable

name formula

ϕ1 p0 ∧ [I]¬p2 ∧ [L]¬p2 ∧ 〈L〉p1 ∧ [L](p1 → ([I]¬p3 ∧ [L]¬p3 ∧ 〈L〉p2))

ϕ3 p0 ∧ [I]¬p2 ∧ [L]¬p2 ∧ 〈L〉p1 ∧ [L](p1 → ([I]¬p3 ∧ [L]¬p3 ∧ 〈L〉ϕ+2
1 ))

ϕ5 p0 ∧ [I]¬p2 ∧ [L]¬p2 ∧ 〈L〉p1 ∧ [L](p1 → ([I]¬p3 ∧ [L]¬p3 ∧ 〈L〉ϕ+2
3 ))

. . . . . .

Fig. 7. Example of a possible model for ϕ1 from Table 3.

branch is eventually examined; the advantage of using different policies is the improved execution time, especially for sat-
isfiable formulæ. We took into account two key aspects: domain cardinality and branch sparseness. The sparseness degree 
of a branch allows us to estimate how many distinct intervals in the domain are actually used; to compute such an esti-
mation, we calculate the average of positive propositional letters assigned to each interval, and define the sparseness of the 
branch as the variance of the distribution associated to assigning positive propositional letters to intervals. We implemented 
the following policies: (i) branches with smaller domain and less sparse first (SBF); (ii) branches with longer domain and 
more sparse first (LBF); (iii) branches in Last-In-First-Out order (LIFO) – that is, the tableau tree is explored depth-first. All 
experiments have been carried out on an Intel(R) Core(TM) i7-6700HQ, with a clock of 2.60 GHz, four cores, and 16 GB
RAM.

Robustness and scalability. In order to test the robustness and the scalability of our implementation, we designed the 
sequence of finitely satisfiable formulæ shown in Table 3, which are systematically generated for k = 1, 3, 5, . . ., so that 
their length can be put in relation with the time that our program takes to establish its satisfiability. Formulæ are generated 
inductively: given ϕk , we obtain ϕ+2

k by replacing each propositional letter pi with pi+2, and, from ϕ+2
k , we generate ϕk+2; 

each ϕk is finitely satisfiable and it has only few different models. More importantly, the formulæ ϕk grow in length and in 
modal depth; following [9], length, modal depth, and number of different models are three of the most important indicators 
to measure the experimental difficulty of proving the satisfiability of a formula. The results of our scalability experiment are 
shown in Fig. 8.

For the sake of clarity, Fig. 7 shows a four points model of ϕ1 (from Table 3), as returned by our algorithm. In Fig. 7, 
on the left-hand side, we consider a sub-formula of ϕ1 and, correspondingly, on the right-hand side, we show how the 
considered sub-formula is, in fact, satisfied in the model. Observe that, in line with classical tableau-based algorithms, only 
necessary requests are shown: for example, there is no obligatory truth value for p1 on [0, 1] because ϕ1 does not require 
it. Moreover, trivially satisfied sub-formulas are not shown: for instance, on [0, 1], the sub-formula [L]¬p2 is satisfied by 
the fact that 0 is the first point of the model.

Semi-randomized test. In order to test our implementation in a more realistic scenario, we need formulæ whose satisfi-
ability status is not fixed. Purely random formulæ are not necessarily challenging for a satisfiability tester: as a matter of 
fact, random formulæ tend to be satisfiable, often admitting several different models. Moreover, testing the scalability of 
the system using only unsatisfiable formulæ of increasing length is not appropriate, as the effort needed to prove that a 
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Fig. 8. Elapsed time for satisfiable formulæ (by length and modal depth).

Fig. 9. Timeouts versus number of finalized formulæ.

formula is unsatisfiable depends on many aspects besides its length, such as, for example, the depth (in the tableau) at 
which a contradiction is found. Therefore, we proceeded as follows.

First, we designed a simple technique to systematically generate scalable unsatisfiable formulæ. To this end, we listed a 
certain number of propositional tautologies, such as

(p ∧ (p → q)) → q,

(p ∧ q) → p,

(p → (p ∨ q)),

as well as a certain number of modal tautologies of HS3, such as

〈L〉〈L〉p → 〈L〉p, 〈L〉p → [L]〈L〉p.

Then, we systematically applied several cycles of uniform substitution to our initial group of tautologies, obtaining longer 
ones. Once we were satisfied of the average length of the resulting formulæ (around 150 symbols each), we negated them, 
obtaining unsatisfiable formulæ.

Second, we designed a simple method to generate randomized formulæ of controllable length, over an alphabet AP of 
propositional letters, by employing a very intuitive schema that recursively produces a formula tree: given the current height 
h, we randomly choose a Boolean or a modal operator (with probability directly proportional to h), or a propositional letter 
in the alphabet (with probability inversely proportional to h), and perform one (or two, depending on the case) recursive 
call(s) with height h − 1. It may be argued that such procedure does not guarantee that the obtained formula has a specific
length; it does, however, guarantee that all formulæ generated with it are, on average, of the same length, and we can 
suitably modulate the initial value of h to obtain formulæ that tend to be of the desired length. Modulating the proportion 
between h and |AP | gives us some control on the probability that the generated formula is indeed satisfiable (following the 
same principles as in [25]).

Finally, we created a database of 5000 formulæ, of comparable length, that contains formulæ from both groups, on a 
proportion 40% (the former, certainly unsatisfiable) and 60% (the latter, probably satisfiable).

We tested our procedure against this problem in order to establish which fraction of the entire group could be solved 
under different timeout settings, from 5 to 30 seconds. The results of these experiments are depicted in Fig. 9. As it can be 
seen, a timeout of 15 seconds was enough to establish the satisfiability of over the 97% of our tested formulæ.

7. Conclusions

In this paper we studied two previously unknown variants of Halpern and Shoham’s logic (HS), inspired by Golumbic 
and Shamir’s interval algebras, which generalize the classical Allen’s Interval Algebra with coarser interval relations. While 
the finer HS7 is still generally undecidable, the coarser HS3 becomes PSpace-complete in the finite case, the case of the 
natural numbers, and the integers, and PSpace-hard in the other cases. A summary of the known results on coarser interval 
temporal logics can be found in Table 4. Undecidability of HS in the finite case can be proven as in [28], although the 
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Table 4
A summary of the results of this paper.

Class HS HS7 HS3

Fin, N, Z, Dis Undec. [28] Undec. [30] PSpace-complete
Lin, Q Undec. [28] Undec. PSpace-hard

authors do not mention this particular case; many of the stricter undecidability results for fragments of HS such as, for 
example, those in [12], actually imply that HS is undecidable in this case as well. Fragments of HS have been extensively 
studied in the recent literature; unfortunately, there is no natural comparison between coarser fragments (such as HS3
and HS7) and syntactical fragments of HS. The latter have been systematically analyzed both from the relative expressive 
power [1] and from the computational complexity point of view [14,15].

There are a number of open problems and interesting research directions in this topic. Besides the natural interest in 
completing the picture of the decidability and the complexity of the satisfiability problem for coarser interval temporal 
logics, there are obvious questions that arise from our results. For example, it has been proved that in the finite/discrete 
case the fragment LL is NP-complete [14], which means that there may exist natural and useful logics expressively in 
between LL and HS3. Moreover, there exists a recently emerged interest in interval temporal logic under sub-propositional 
restrictions [20,7,19], and it makes sense to explore a logic such as HS3 under similar restrictions.
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