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Abstract: Air quality modelling that relates meteorological, car traffic, and pollution data is a
fundamental problem, approached in several different ways in the recent literature. In particular, a
set of such data sampled at a specific location and during a specific period of time can be seen as a
multivariate time series, and modelling the values of the pollutant concentrations can be seen as a
multivariate temporal regression problem. In this paper, we propose a new method for symbolic
multivariate temporal regression, and we apply it to several data sets that contain real air quality data
from the city of Wrocław (Poland). Our experiments show that our approach is superior to classical,
especially symbolic, ones, both in statistical performances and the interpretability of the results.

Keywords: temporal regression; symbolic regression; air quality modelling

1. Introduction

Anthropogenic environmental pollution is a known and indisputable issue. In every-
day life, we are exposed to a variety of harmful substances, often absorbed by the lungs
and the body through the air we breath; among the most common pollutants, NO2, NOx,
and PM10 are the most typical ones in averaged-sized and big cities. The potential negative
effects of such exposure has been deeply studied and confirmed by several authors (see,
among others, Refs. [1–6]). Air quality is regularly monitored, and in some cases, alert
systems inform residents about the forecasted concentration of air pollutants. Such sys-
tems may be based on machine learning technologies, effectively reducing the forecasting
problem to an algorithmic one. Air quality data, along with the most well-known influenc-
ing factors, are usually monitored in a periodic way; the set of measurements in a given
amount of time and at a given geographical point can be then regarded to as a time series.
In this sense, the problem to be solved is a regression problem and, more in particular,
a multivariate temporal regression problem.

A multivariate temporal regression problem can be solved in several ways. Follow-
ing the classic taxonomy in machine learning, regression can be functional or symbolic;
functional regression is a set of techniques and algorithms that allow one to extract a
mathematical function that describes a phenomenon, while symbolic regression is devoted
to inferencing a logical theory. Functional regression, which is far more popular and com-
mon, can be as simple as a linear regression or as complex as a neural network. On the
other hand, typical symbolic approaches include decision trees, random forests, and rule
based regressors. Temporal regression generalizes regression by taking into account past
values of the independent variable to predict the current value of the dependent one, and it
has been successfully used in many contexts, including air quality prediction. Examples
include autoregressive models [7,8], land use regression models [9–11], and optimized lag
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regression models [12]. While, in general, functional regression systems tend to perform sta-
tistically well, their models tend to lack interpretability, defined not only as the possibility
of understanding the process that is behind a prediction, but also explaining it. Attempts
at amending this problem include optimizing the amount of lag per each independent
variable have been done, for example, in [12]; by pinpointing exactly the amount of delay
after which an independent variable has its maximal effect on the dependent one, it is
possible to derive more reliable physical theories to explain the underlying phenomenon.
However, the resulting model is still functional, and therefore not completely explicit.
Symbolic regression is less common and, at least in problems of air quality prediction,
usually limited to non-interpretable symbolic systems, such as random forests [13]. There
are two typical, explicit approaches to symbolic regression, that is decision trees and rule
based regression systems. Decision trees are part of the more general set of techniques often
referred to as classification and regression trees, originally introduced in [14], but then
improved by several authors and implemented in different versions and learning suites.
Rule based regression is an alternative to decision tree regression based on the possibility
of extracting independent rules instead of a tree, and it was introduced in [15], but as in
the case of trees, improved and extended in different ways later on. In [16], a prototype
interval temporal symbolic classification tree extraction algorithm, called Temporal J48,
was presented. While originally designed for temporal classification (i.e., classification
of time series), as shown in [17], it can be used for temporal regression. In this formula-
tion, Temporal J48 features, on its own, many of the relevant characteristics for modern
prediction systems, for example for air quality modelling: it is symbolic; therefore, its
predictions are interpretable and explainable; and it allows the use of past values of the
independent variables; therefore, it is comparable with lag regression systems. Interval
temporal regression is based on interval temporal logic and, in particular, on Halpern and
Shoham’s modal logic for time intervals [18]. In short, the extracted model is based on
decisions made on the past values of the independent variables over intervals of time,
and their temporal relations; for example, Temporal J48 may infer that if the amount of
traffic in a certain interval of time is, on average, very high, while there are no gusts of
wind during the same interval, then at the end of that interval, the concentration of NO2
is high. The interaction between intervals is modelled via the so-called Allen’s relations,
which are, in a linear understanding of time, thirteen [19]. The driving idea of Temporal J48
is no different from the classical regression tree extraction, that is Temporal J48 is a greedy,
variance based extraction algorithm (it is, in fact, adapted from WEKA’s implementation of
J48 [20]). As a consequence, at each learning step, a local optimum is searched to perform
a split of the data set, leading, in general, to not necessarily optimal trees. This problem
exists in the non-temporal case, and not only in decision/regression trees. In a typical
situation, greedy, locally optimal algorithms can be used in the context of feature selection,
which is a meta-strategy that explores different selections of the independent variables
and how such a selection influences the performances of the model. With Temporal J48,
we can generalize such a concept to language and feature selection, that is the process of
selecting the best features and the best interval relations for temporal regression. As it turns
out, the techniques for feature selection can be applied to solve the feature and language
selection problem.

In this paper, we consider a data set with traffic volume values, meteorological values,
and pollution values measured at a specific, highly trafficked street crossing in Wrocław
(Poland), from 2015 to 2017. Namely, we consider the problem of modelling the concentra-
tion of NO2 (nitrogen oxide) in the air and define it as a temporal regression problem; by
applying Temporal J48 to this problem, we approach and solve, more in general, a feature
and language selection problem for symbolic temporal regression. To establish the reliabil-
ity of our approach, we set an experiment with different subsets of the original data set,
and we compare the results of temporal symbolic regression with those that can be obtained
with other symbolic regression algorithms, such as (lagged or non-lagged versions of) re-
gression trees and linear regressors, under the same conditions. As we find out, temporal
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symbolic regression not only returns interpretable models that enable the user to know
why a certain prediction has been performed, but, at least in this case, the extracted models
present statistically better and more reliable results. In summary, we aim at solving the
problem of air quality modelling by defining it as a temporal regression problem, and we
benchmark our proposed methodology based on temporal decision trees against methods
that are present in the literature that may or may not consider the temporal component
in an explicit way; the symbolic nature of the proposal allows naturally interpreting the
underlying temporal theory that resembles the data by means of Halpern and Shoham’s
logic. In this way, we hope to amend some of the well-known problems of prediction
methods, including the post-hoc interpretability of the results.

The paper is organized as follows. In Section 2, we highlight the needed background
on the function and symbolic temporal regression problem, along with the feature selection
process for regression tasks. In Section 3, we propose to solve the symbolic temporal
regression problem by means of temporal decision trees. In Section 4, we formalize the
feature and language selection learning process by means of multi-objective evolutionary
optimization algorithms. In Section 5, we present the data used in our experiments and the
experimental settings. The experiments are discussed in Section 6, before concluding.

2. Background
2.1. Functional Temporal Regression

Regression analysis is a method that allows us to predict a numerical outcome variable
based on the value of one (univariate regression) or multiple (multivariate regression)
predictor variables. The most basic approach to multivariate regression is a linear regression
algorithm, typically based on a least squares method. Linear regression assumes that the
underlying phenomenon can be approximated with a straight line (or a hyperplane, in the
multivariate case). However, in the general case, a functional regression algorithm searches
for a generic function to approximate the values of the dependent variable. Assume that A
is a data set with n independent variables A1, . . . , An and one observed variable B, where
Dom(A) (resp., Dom(B)) is the set in which an independent variable (or attribute) A (resp.,
the dependent variable B) takes a value, and dom(A) (resp., dom(B)) is the set of its actual
values of A (resp., B): 

a1,1 a1,2 . . . a1,n b1
a2,1 a2,2 . . . a2,n b2
. . . . . . . . . . . . . . .

am,1 am,2 . . . am,n bm

 (1)

Then, solving a functional regression problem consists of finding a function F so that
the equation:

B = F(A1, A2, . . . , An), (2)

is satisfied. When we are dealing with a multivariate time series, composed of n indepen-
dent and one dependent time series, then data are temporally ordered and associated with
a timestamp: 

a1,1 a1,2 . . . a1,n b1 t1
a2,1 a2,2 . . . a2,n b2 t2
. . . . . . . . . . . . . . . . . .

am,1 am,2 . . . am,n bm tm

 (3)

and solving a temporal functional regression problem consists of finding a function F so
that the equation:

B(t) = F(A1(t), A2(t), . . . , An(t)) (4)

is satisfied for every t. Temporal regression is different from the non-temporal one when,
in identifying the function F, one takes into account the past values of the independent
variables as well. Having fixed a maximum lag l, the equation becomes:

B(t) = F(A1(t), A1(t− 1), . . . , A1(t− l + 1), . . . , An(t), An(t− 1), . . . , An(t− l + 1)) (5)
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The literature on functional regression is very wide. Methods range from linear
regression, to polynomial regression, to generic non-linear regression and include variants
of the least squares method(s), such as robust regression [21,22]. Autoregressive models,
typically of the ARIMAX [23] family, are methods that include, implicitly, the use of past
values of the independent variables and, in the most general case, of the dependent one
as well (therefore, modifying Equation (5) to include B(t− 1), B(t− 2), . . . , B(t− l + 1) as
well; as a matter of fact, the simplest autoregressive models are based on the past values of
the dependent variable only).

The machine learning counterpart approach to temporal functional regression and,
in fact, to temporal regression as a whole consists of using a non-temporal regression
algorithm fed with new variables, that is lagged variables, that corresponds to the past
values of the variables of the problem. In other words, the typical strategy consists of
producing a lagged data set from the original one:

al,1 al−1,1 al−2,1 . . . al,n al−1,n al−2,n . . . bl tl
al+1,1 al,1 al−1,1 . . . al+1,n al,n al−1,n . . . bl+1 tl+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am,1 am−1,1 am−2,1 . . . am,n am−1,n am−2,n . . . bm tm

 (6)

Such a strategy has the advantage of being applicable to every regression algorithm,
up to and including the classic functional regression algorithm, but also, symbolic al-
gorithms for regression. Linear regression is undoubtedly the most popular regression
strategy, implemented in nearly every learning suite; in the case of WEKA [20], the class is
called LinearRegression, and it can be used with lagged and non-lagged data.

2.2. Symbolic Temporal Regression

Classification and regression trees (CART) is a term introduced in [14] to refer to deci-
sion tree algorithms that can be used for both classification and regression. A regression
tree is a symbolic construct that resembles a decision tree (usually employed for classifica-
tion), based on the concept of data splitting and on the following language of propositional
letters (decisions):

S = {A ./ a | A is an attribute and a ∈ dom(A)} (7)

where ./∈ {≤,=} and dom(A) is the domain of the attribute A. A regression tree τ is
obtained by the following grammar:

τ ::= (S ∧ τ) ∨ (¬S ∧ τ) | b̂ (8)

where S ∈ S and b̂ ∈ Dom(B) (however, b is not necessarily in dom(B)). Solving a
regression problem with a regression tree entails finding a tree that induces a function F
defined by cases:

F =


b̂1 if Condition 1
b̂2 if Condition 2
. . . . . .
b̂t if condition t

(9)

The conditions are propositional logical formulas written in the language of S , and in-
tuitively, such a function can be read as if the value of these attributes is . . . , then the value
of the dependent variable is, on average, this one, . . . , and so on. In other words, F is a stair-
case function. The main distinguishing characteristics of a staircase function obtained by a
(classic) regression tree is that the conditions are not independent of each other, but they
have parts in common, as they are extracted from a tree. Therefore, for example, one may
have a first condition of the type if A1 ≤ 5 and A2 ≤ 3, then B = 1, and a second condition
of the type if A1 ≤ 5 and A2 > 3, then B = 3. If functional regression is mainly based on
the least squares method, the gold standard regression method with trees is splitting by
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variance, which consists of successively splitting the data set searching for smaller ones
with lower variance in the observed values of the dependent variable; once the variance
in a data set associated with a node is small enough, that node is converted into a leaf,
and the value of the dependent variable is approximated with the average value of the data
set associated with it. Such an average value labels the leaf. Regression trees are not as
common as decision trees in the literature; they are usually employed in ensemble methods
such as random forest. However, popular learning suites do have simple implementations
of regression trees. In the suite WEKA, the to-go implementation in this case is called
RepTree. Despite its name, such an implementation is a variant of the more popular J48,
which is, in fact, its counterpart for classification. Regression trees can be used on both
atemporal and temporal data, by using, as in the functional case, lagged variables.

2.3. Feature Selection for Regression

Feature selection (FS) is a data preprocessing technique that consists of eliminating
features from the data set that are irrelevant to the task to be performed [24]. Feature
selection facilitates data understanding, reduces the storage requirements, and lowers the
processing time, so that model learning becomes an easier process. Univariate feature
selection methods are those that do not incorporate dependencies between attributes,
and they consist of applying some criterion to each pair feature-response and measuring the
individual power of a given feature with respect to the response independent of the other
features, so that each feature can be ranked accordingly. In multivariate methods, on the
other hand, the assessment is performed for subsets of features rather than single features.
From the evaluation strategy point of view, FS can be implemented as single attribute
evaluation (in both the univariate and the multivariate case) or as subset evaluation (only
in the multivariate case). Feature selection algorithms are also categorized into filter,
wrapper, and embedded models. Filters are algorithms that perform the selection of
features using an evaluation measure that classifies their ability to differentiate classes
without making use of any machine learning algorithm. Wrapper methods select variables
driven by the performances of an associated learning algorithm. Finally, embedded models
perform the two operations (selecting variables and building a classifier) at the same time.
There are several different approaches to feature selection in the literature; among them,
evolutionary algorithms are very popular. The use of evolutionary algorithms for the
selection of features in the design of automatic pattern classifiers was introduced in [25].
Since then, genetic algorithms have come to be considered as a powerful tool for feature
selection [26] and have been proposed by numerous authors as a search strategy in filter,
wrapper, and embedded models [27–29], as well as feature weighting algorithms and
subset selection algorithms [30]. A review of evolutionary techniques for feature selection
can be found in [31], and a very recent survey of multi-objective algorithms for data
mining in general can be found in [32]. Wrapper methods for feature selection are more
common in the literature; often, they are implemented by defining the selection as a search
problem and solved using metaheuristics such as evolutionary computation (see, e.g.,
Refs. [26,30,33]). The first evolutionary approach involving multi-objective optimization
for feature selection was proposed in [34]. A formulation of feature selection as a multi-
objective optimization problem was presented in [35]. In [36], a wrapper approach was
proposed taking into account the misclassification rate of the classifier, the difference in the
error rate among classes, and the size of the subset using a multi-objective evolutionary
algorithm. The wrapper approach proposed in [37] minimizes both the error rate and the
size of a decision tree. Another wrapper method was proposed in [38] to maximize the
cross-validation accuracy on the training set, maximize the classification accuracy on the
testing set, and minimize the cardinality of feature subsets using support vector machines
applied to protein fold recognition.

A multi-objective optimization problem [39] can be formally defined as the optimiza-
tion problem of simultaneously minimizing (or maximizing) a set of z arbitrary functions:
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min / max f1(Ū)
min / max f2(Ū)
. . .
min / max fz(Ū),

(10)

where Ū is a vector of decision variables. A multi-objective optimization problem can be
continuous, in which we look for real values, or combinatorial, in which we look for objects
from a countably (in)finite set, typically integers, permutations, or graphs. Maximization
and minimization problems can be reduced to each other, so that it is sufficient to consider
one type only. A set F of solutions for a multi-objective problem is non dominated (or
Pareto optimal) if and only if for each Ū ∈ F , there exists no V̄ ∈ F such that (i) there exists
i (1 ≤ i ≤ z) that fi(V̄) improves fi(Ū) and (ii) for every j, (1 ≤ j ≤ z, j 6= i), f j(Ū) does
not improve fi(V̄). In other words, a solution Ū dominates a solution V̄ if and only if Ū is
better than V̄ in at least one objective, and it is not worse than V̄ in the remaining objectives.
We say that Ū is non-dominated if and only if there is no other solution that dominates
it. The set of non-dominated solutions from F is called the Pareto front. Optimization
problems can be approached in several ways; among them, multi-objective evolutionary
algorithms are a popular choice (see, e.g., Refs. [31,32,35]). Feature selection can be seen as
a multi-objective optimization problem, in which the solution encodes the selected features,
and the objective(s) are designed to evaluate the performances of some model-extraction
algorithm; this may entail, for example, instantiating (10) as:{

max Per f ormance(Ū)
min Cardinality(Ū),

(11)

where Ū represents the chosen features; (11) can be seen as a type of wrapper. When
the underlying problem is a regression problem, then (11) is a formulation of the feature
selection problem for regression.

3. Symbolic Temporal Regression

Let A be a multivariate time series with n independent variables, each of m distinct
points (from one to m), and no missing values; Figure 1 (top) is an example with n = 2
and m = 8. Any such time series can be interpreted as a temporal data set on its own,
in the form of (3). In our example, this corresponds to interpreting the data as in Figure 1
(middle, left). As explained in the previous section, the regression problem for B can be
solved in a static way. Moreover, by suitably pre-processing A as in (6), the problem can be
seen as a temporal regression problem; in our example, this corresponds to interpreting the
data as in Figure 1 (middle, right). The algorithm Temporal C4.5 and its implementation
Temporal J48 [16,17] are symbolic (classification and) regression trees that can be considered
as an alternative to classic solutions, whose models are interpretable, as they are based
on decision trees, use lags (but not lagged variables), and are natively temporal. Briefly,
Temporal C4.5 is the natural theoretical extension of C4.5 developed by Quinlan in the
1990s for the temporal case when dealing with more than propositional instances such as
multivariate time series, and Temporal J48 is WEKA’s extension of J48 to the temporal case;
observe that such a distinction must be made since the implementation details may differ
between public libraries, but the theory, in general, is the same.

Our approach using Temporal J48 for regression is based on two steps: (i) a filter
applied to the original data A and (ii) a regression tree extraction from the filtered data,
similar to the classic decision tree extraction problem. The first step consists of extracting
fromA a new data set, in which each instance is, in itself, a multivariate time series. Having
fixed a maximum lag l, the i-th new instance (i ≥ 1) is the chunk of the multivariate time
series A that contains, for each variable A1, . . . , An, the values at times from i to i + l − 1,
for 1 ≤ i ≤ m− l + 1 (i.e., an l-points multivariate time series). Such a short time series,
so to say, is labelled with the (i + l − 1)-th value of the dependent variable B. In this way,
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we have created a new data set with m− l + 1 instances, each of which is a time series.
In our example, this is represented as in Figure 1 (bottom), where l = 3. The second
step consists of building a regression tree whose syntax is based on a set of decisions that
generalizes the propositional decision of the standard regression tree. Observe that time
series describe continuous processes, and when discretized, it makes less sense to model
the behaviour of such complex objects at each point. Thus, the natural way to represent
time series is an interval based ontology, and the novelty of the proposed methodology is
to make the decision over intervals of time. The relationships between intervals in a linear
understanding of time are well known; they are called Allen’s relations [19], and despite a
somewhat cumbersome notation, they represent the natural language in a very intuitive
way. In particular, Halpern and Shoham’s modal logic of Allen’s relations (known as
HS [18]) is the time interval generalization of propositional logic and encompasses Allen’s
relations in its language (see Table 1). Being a modal logic, formulas can be propositional
or modal, the latter being, in turn, existential or universal. Let AP be a set of propositional
letters (or atomic propositions). Formulas of HS can be obtained by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | 〈X2〉 | . . . | 〈Xk〉ϕ, (12)

where p ∈ AP , 〈X〉 is any of the modality corresponding to Allen’s relation, and [X]
denotes its universal version (e.g., ¬〈A〉ϕ ≡ [A]¬ϕ). On top of Allen’s relations, the op-
erator 〈=〉 is added to model decisions that are taken on the same interval. For each
X ∈ {A, L, B, E, D, O}, the modality 〈X〉, corresponding to the inverse relation RX of RX,
is said to be the transpose of the modality 〈X〉, and vice versa. Intuitively, the formulas of
HS can express the properties of a time series such as if there exists an interval in which A1
is high, during which A2 is low, then . . . , as an example of using existential operators, or as
if during a certain interval, A1 is always low, then . . . , as an example of using universal
ones. Formally, HS formulas are interpreted on time series. We define:

T = 〈I([l]), V〉,

where [l] = {1, . . . , l} is the domain of the time series, I([l]) is the set of all strict intervals
over [l] having cardinality l(l − 1)/2, and:

V : AP → 2I([l])

is a valuation function, which assigns to each proposition p ∈ AP the set of intervals
V(p) on which p holds. Following the presentation, note that we deliberately use l for
the domain of T, which is also the maximum fixed lag. The truth of formula ϕ on a given
interval [x, y] in a time series T is defined by structural induction on formulas as follows:

T, [x, y]  p iff [x, y] ∈ V(p), for all p ∈ AP ;
T, [x, y]  ¬ψ iff T, [x, y] 6 ψ (i.e., it is not the case that T, [x, y]  ψ);
T, [x, y]  ψ1 ∨ ψ2 iff T, [x, y]  ψ1 or T, [x, y]  ψ2;
T, [x, y]  〈=〉ψ iff T, [x, y]  ψ;
T, [x, y]  〈X〉ψ iff there is [w, z] s.t. [x, y]RX [w, z] and T, [w, z]  ψ;
T, [x, y]  〈X〉ψ iff there is [w, z] s.t. [x, y]RX [w, z] and T, [w, z]  ψ;

where X ∈ {A, L, B, E, D, O}. It is important to point out, however, the we use logic as a
tool; through it, we describe the time series that predict a certain value, so that the expert is
able to understand the underlying phenomenon. The semantics of the relations RX allows
us to ease such an interpretation:
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RA (meets) an interval that meets the current one;
RL (later than) an interval that is later than the current one;
RE (ends) an interval that ends the current one;
RB (starts) an interval that starts the current one;
RD (during) an interval that is during the current one;
RO (overlaps) an interval that overlaps the current one.

Thus, a formula of the type p ∧ 〈A〉q is interpreted as p holds now (in the current
interval), and there is an interval that starts when the current one ends in which q holds.

From the syntax, we can easily generalize the concept of decision and define a set of
temporal and atemporal decisions S = S� ∪ S=, where:

S� = {〈X〉(A ./γ a), 〈X〉(A ./γ a) | A is an attribute and a ∈ dom(A)},
S= = {A ./γ a | A is an attribute and a ∈ dom(A)}, (13)

where ./∈ {≤,=, 6=,>}, γ ∈ (0.0, 1.0], and 〈X〉 is an interval operator of the language
of HS. The value γ allows us a certain degree of uncertainty: we interpret the decision
A ./ a on an interval [x, y] with a certain value γ as true if and only if the ratio of points
between x and y satisfying A ./ a is at least γ. A temporal regression tree is obtained by
the following grammar:

τ ::= (S ∧ τ) ∨ (¬S ∧ τ) | b̂, (14)

where S is a (temporal or atemporal) decision and b̂ ∈ Dom(B), in full analogy with
non-temporal trees. The idea that drives the extraction of a regression tree is the same
in the propositional and the temporal case, and it is based on the concept of splitting by
variance. The result is a staircase function, with the additional characteristic that each leaf
of the tree, which represents such a function, can be read as a formula of HS. Therefore,
if a propositional tree for regression gives rise to tree rules of the type if A1 < 3 two units
before now and A2 > 5 one unit before now, then, on average, B = 3.2 when used on
lagged data, Temporal J48 gives rise to rules of the type if mostly A1 < 3 during an interval
before now and mostly A2 > 5 in an interval during it, then, on average, B = 3.2. It should
be clear, then, that Temporal J48 presents a superior expressive power that allows one to
capture complex behaviours. It is natural to compare the statistical behaviour of regression
trees over lagged data and that of Temporal J48 using the same temporal window.

Table 1. Allen’s relations and their logical notation. HS, Halpern and Shoham.

HS Modality Definition w.r.t. the Interval Structure Example

x y
w z

w z
w z

w z
w z

w z

〈A〉 (after) [x, y]RA[w, z] ⇔ y = w
〈L〉 (later) [x, y]RL[w, z] ⇔ y < w
〈B〉 (begins) [x, y]RB[w, z] ⇔ x = w ∧ z < y
〈E〉 (ends) [x, y]RE[w, z] ⇔ y = z ∧ x < w
〈D〉 (during) [x, y]RD[w, z] ⇔ x < w ∧ z < y
〈O〉 (overlaps) [x, y]RO[w, z] ⇔ x < w < y < z
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1 2 3 4 5 6 7 8
B
36
37
38
39
40
41
42

A2

90
95
100
105
110
115
120

A1

5
10
15
20
25
30
35

A1

B

A2

•
• •

•

•
• •

•
•

•
•

• •

•
•

•

•

•

• •

•

• •
•

A1 A2 B

10 110 36
15 90 36
25 90 38
30 100 40
30 105 40
20 110 39

. . . A1(t− 1) A2(t− 1) A1(t) A2(t) B(t)

. . . 10 105 10 110 36

. . . 10 110 5 100 36

. . . 5 100 5 110 38

. . . 5 110 15 115 40

. . . 15 115 20 115 40

. . . 20 115 25 105 39

A1(i; i + 1; i + 2) A2(i; i + 1; i + 2) B(i + 2)

5;10;10 110;105;110 36
10;10;15 105;110;90 36
25;5;5 95;100;110 38
5;5;15 100;110;115 40
5;15;20 110;115;115 40

15;20;25 115;115;105 39

Figure 1. A multivariate time series with three variables (top). Static regression (middle, left). Static
lagged regression (middle, right). Multivariate time series regression (bottom).

A temporal regression tree such as Temporal J48 is extracted from a temporal data set
following the greedy approach of splitting by variance as in the propositional case. Being
sub-optimal, a worse local choice may, in general, produce better global ones. This is the
idea behind feature selection: different subsets of attributes lead to different local choices,
in search for global optima. In the case of temporal regression trees, however, the actual
set of interval relations that are used for splitting behaves in a similar way: given a subset
of all possible relations, a greedy algorithm for temporal regression trees’ extraction may
make worse local choices that may lead to better global results. Therefore, we can define a
generalization of (11): {

max Per f ormance(Ū, V̄)
min Cardinality(Ū),

(15)

in which Ū represents a selection of features and V̄ represents a selection of interval
relations to be used during the extraction. This is a multi-objective optimization problem
that generalizes the feature selection problem, and we can call it the feature and language
selection problem. Observe that there is, in general, an interaction between the two choices:
different subsets of features may require different subsets of relations for a regression tree
to perform well. The number of interval relations that are actually chosen, however, does
not affect the interpretability of the result, and therefore, it is not optimized (in the other
objective function).

4. Multi-Objective Evolutionary Optimization

In the previous section, we defined the feature and selection problem as an optimiza-
tion problem. We chose to approach such an optimization problem via an evolutionary
algorithm and, in particular, using the well-known algorithm NSGA-II [40], which is
available as open source from the suite jMetal [41]. NGSA-II is an elitist Pareto based
multi-objective evolutionary algorithm that employs a strategy with a binary tournament
selection and a rank-crowding better function, where the rank of an individual in a popula-
tion is the non-domination level of the individual in the whole population. As a regression
algorithm, we used the class TemporalJ48, integrated in the open-source learning suite
WEKA, run in full training mode, with the following parameters: l = 10, γ = 0.7. We used
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a fixed-length representation, where each individual solution consists of a bit set. In simple
feature selection, each individual is of the type:

Ū = (U1, U2, . . . , Un), (16)

where, for each 1 ≤ t ≤ n, Ut = 1 (resp., Ut = 0) is interpreted as the t-th attribute being
selected (resp., discarded), while in feature and language selection, it becomes of the type:

Ū, V̄ = (U1, U2, . . . , Un, V1, V2, . . . , V13). (17)

where, for each 1 ≤ t ≤ 13, Vt = 1 (resp., Vt = 0) is interpreted as the t-th interval relation
being selected (resp., discarded). The structure of the second part, obviously, depends on
the fact that there are 13 Allen’s relations (including equality) between any two intervals,
as we recalled above; there is no natural ordering of interval relations, and we can simply
assume that a total ordering has been fixed.

In terms of objectives, minimizing the cardinality of the individuals is straightforward,
and we do so by using the function Card(Ū) defined as:

Card(Ū) =
n

∑
t=1

Ū(t). (18)

As much as optimizing the performances of the learning algorithm, we define:

Corr(Ū, V̄) = 1− |ρ(Ū, V̄)|, (19)

where ρ() measures the correlation between the stochastic variable obtained by the ob-
servations and the staircase function obtained by Temporal J48 using only the features
selected by Ū and the interval relations selected by V̄. The correlation varies between −1
(perfect negative correlation) and one (perfect positive correlation), zero being the value
that represents no correlation at all. Defined in this way, Corr ought to be minimized.

5. Data and Experiments

Our purpose in this paper is to solve a temporal regression problem for air quality
modelling and prediction. We consider an air quality database that contains measurements
of several parameters in the city of Wrocław (Poland); in particular, we consider data from
a communication station located within a wide street with two lanes in each direction
(GPS coordinates: 51.086390 North, 17.012076 East; see Figure 2). One of the largest
intersections in Wrocław is located approximately 30 meters from the measuring station
and is covered by traffic monitoring cameras. A weather measurement station is located on
the outskirts of the city, at 9.6 km from the airport, and our data set is structured so that
all such data are combined in an attempt to predict pollution concentrations. Pollution
data are collected by the Provincial Environment Protection Inspectorate and encompasses
the hourly NO2 concentration values during three years, from 2015 to 2017. The traffic
data are provided by the Traffic Public Transport Management Department of the Roads
and City Maintenance Board in Wrocław and include the hourly count of all types of
vehicles passing the intersection. Public meteorological data are provided by the Institute
of Meteorology and Water Management, and they include: air temperature, solar duration,
wind speed, relative humidity, and air pressure. In order to make the data uniform, solar
duration values were re-normalized in the real interval [0, 1]. In the pre-processing phase,
the instances with at least one missing value (617 samples, 2.3%) were deleted. Some basic
statistic indicators on the remaining 25,687 instances are presented in Table 2.
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Figure 2. An aerial view of the area of interest. The red circle is the communication station.

Table 2. Descriptive statistics.

Variable Unit Mean St.Dev. Min Median Max

Air temperature °C 10.9 8.4 −15.7 10.1 37.7
Solar duration h 0.23 0.38 0 0 1
Wind speed ms−1 3.13 1.95 0 3.00 19
% relative humidity − 74.9 17.3 20 79.0 100
Air pressure hPa 1003 8.5 906 1003 1028
Traffic − 2771 1795.0 30 3178 6713

NO2 µgm−3 50.4 23.2 1.7 49.4 231.6

We considered, in particular, the set A that contains the transport, meteorological,
and pollution data from the year 2017. From it, we extracted the sets Amonth, where
monthranges from Jan to Dec, each containing the hourly data of the first 10 days of
each month. Therefore, each Amonth contains exactly 240 instances. For each month,
then, we designed a regression experiment using: (i) classic, non-temporal linear regres-
sion (using the class LinearRegression); (ii) classic, non-temporal decision tree regression
(using the class RepTree); (iii) lagged linear regression on the lagged version of Amonth,
with l = 10; (iv) lagged propositional decision tree regression on the lagged version of
Amonth, with l = 10, and (v) feature and language selection for temporal decision tree
regression on the transformed version of Amonth, with l = 10 and γ = 0.7. We tested the
prediction capabilities of each of the extracted models on the corresponding set Amonth.
In the case of temporal regression, each experiment returned a set of classifiers, more
precisely a Pareto set; from it, we selected the classifier with the best correlation. All experi-
ments were executed in 10-fold cross-validation mode, which guarantees the reliability of
the results. Observe how different experiments correspond, in fact, to different preprocess-
ing of the data: In (i) and (ii), a givenAmonth contains 240 instances, each corresponding to a
specific hour sample, and six (+1) columns, each corresponding to an independent variable
(plus the dependent one). In (iii) and (iv), a given Amonth contains 60 (+1) columns, each
being an independent variable or its lagged version, with lags from one to 10 h; therefore,
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the number of instances is actually 231 (= m− l + 1), because the first sample for which
the dependent value can be computed is the one at Hour 10. Finally, in (v), a given Amonth
contains 231 multivariate time series, each with 10 values of each of the independent vari-
ables, temporally ordered, and labelled with the values of the independent one, starting,
again, from the sample at Hour 10.

6. Results and Discussion

All results can be seen in the tables from Tables 3–6, in which we report, per each
experiment, not only the correlation coefficient (cc) between the ground truth b ∈ dom(B)
and the predicted value b̂ ∈ Dom(B) [20,42,43], but also the mean average error (mae),
the root mean squared error (rmse), and the relative absolute error (rae). The first group of
results concerns non-lagged data and standard approaches. As we can see, the correlation
coefficient ranges from 0.59 to 0.83, with an average of 0.71, in the linear regression models,
and from 0.60 to 0.72, with an average of 0.72, in the decision tree models. The fact that the
latter show a slightly better behaviour than the former may indicate that the underlying
process is not (strongly) linear and that a stepwise function may approximate this reality in
a better way. The fact that the average correlation is not too high in both cases and that
in both case, there is at least one month in which it is particularly low may indicate that
non-lagged data probably do not capture the underlying phenomenon in its full complexity.

As much as lagged data are concerned, in linear regression models, the correlation
coefficients range from 0.71 to 0.84, with an average of 0.78, while in decision tree models
from 0.65 to 0.87, with an average of 0.76, presented in Table 4. As we can see, the situation
reversed itself, the linear models being more precise than the decision tree ones. A possible
explanation is that, while lagged data, in general, offer more information about the under-
lying process, reasoning with more variables (i.e., 60 vs. six) allows finding very complex
regression hyperplanes, which adapt to the data in a natural way; unfortunately, this is a
recipe for non-interpretability, as having such a complex regression function, with different
coefficients for the same independent variable at different lags, makes it very difficult for
the expert to create an explanatory physical theory. To give one example, we consider
the linear model extracted from AJan and, in particular, the coefficients of each variable,
as shown in Table 5. As can be observed, the alleged influence of every variable seems to
have some erratic behaviour, with coefficients with different signs and absolute values at
different lags. It could be argued that such a matrix of values is no different from a weight
matrix of a neural network, in some sense.

Finally, in Table 6, we can see the results of Temporal J48, in which case the correlation
coefficient ranges from 0.78 to 0.87, with an average of 0.83. As can be noticed, in exchange
for a higher computational experimental complexity, this method returns clearly better
results. This is to be expected, as, by its nature, it combines the benefits of the lagged
variables with those of symbolic regression. One can observe not only the improvement
in the average, but also in the stability among the twelve months: in the worst case,
the correlation index is 0.78, which is to be compared, for example, with the worst case
of simple linear regression (0.59). Moreover, it seems that Temporal J48 behaves in a
particularly good way on difficult cases: if the case of Ajul , for example, we have a
correlation coefficient of 0.67 with non-lagged data and decision trees, 0.65 with lagged data
and decision trees, and 0.78 with serialized data. In addition to the statistical performances
of these models, the following aspects should be noticed. First, these models were extracted
in a feature selection context; however, in all cases, the evolutionary algorithm found that
all variables had some degree of importance, and no variable was eliminated. Second,
the language(s) that was selected allows one to draw some considerations on the nature
of the problem; for example, the fact that, in all cases, the relation during or its inverse
(i.e., 〈D〉 or 〈D〉) was selected indicates that the past interactions between the variables is
a key element for modelling this particular phenomenon. Because Temporal J48, in this
experiment, was run without pruning, the resulting trees cannot be easily displayed because
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of their dimensions. Nevertheless, thanks to its intrinsic interpretability, meta-rules can be
easily extracted from a regression tree, as, for example:

If Rel.humidity is high while traffic is high then NO2 tends to be high
If Sol.duration is high while traffic is very low then NO2 tends to be low
. . .

(20)

which can contribute to designing a real-world theory of the modelled phenomenon.
The language selection part performed by the optimizer, in general, reduces the set of used
temporal operators of HS when extracting the rules (see Table 6), and this is desirable
considering that, among many others, one desideratum for interpretability is to explain
the reasoning in an understandable way to humans, which have a strong and specific bias
towards simpler descriptions [44].

Table 3. Test results, non-temporal data: linear regression (top) and decision tree regression (bottom).

Month cc mae rmse rae (%)

Jan 0.75 10.47 13.38 63.61
Feb 0.73 10.67 12.86 67.86
Mar 0.65 12.66 16.04 73.62
Apr 0.68 12.05 14.62 75.87
May 0.71 10.00 13.63 61.86
Jun 0.61 12.57 15.34 79.93
Jul 0.59 11.90 15.09 79.35

Aug 0.69 13.62 17.07 70.74
Sep 0.72 11.47 15.21 64.24
Oct 0.83 8.84 11.11 52.95
Nov 0.76 8.58 11.25 61.18
Dec 0.77 9.32 12.05 57.15

average 0.71 11.01 12.84 67.36

Month cc mae rmse rae (%)

Jan 0.77 9.35 13.21 56.84
Feb 0.75 9.89 12.92 62.91
Mar 0.67 12.71 16.59 73.90
Apr 0.76 9.86 13.41 62.09
May 0.71 10.34 13.99 63.97
Jun 0.70 11.24 14.58 71.45
Jul 0.67 11.21 14.87 74.74

Aug 0.76 11.87 15.96 61.63
Sep 0.60 12.88 18.82 72.13
Oct 0.76 9.74 13.35 58.37
Nov 0.74 8.91 11.93 63.58
Dec 0.75 9.55 12.93 58.55

average 0.72 9.85 13.28 60.28
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Table 4. Test results, lagged data; linear regression (top), and decision-tree regression (bottom).

Month cc mae rmse rae (%)

Jan 0.80 9.79 12.21 59.51
Feb 0.83 8.35 10.58 53.16
Mar 0.81 9.45 12.66 54.94
Apr 0.71 11.43 14.30 71.95
May 0.73 10.67 13.86 66.02
Jun 0.72 10.61 13.63 67.41
Jul 0.75 9.94 12.57 66.29

Aug 0.77 12.80 15.45 66.44
Sep 0.78 11.31 14.56 63.34
Oct 0.82 9.00 11.58 53.96
Nov 0.80 8.22 10.60 58.61
Dec 0.84 8.08 10.42 49.51

average 0.78 9.09 12.70 60.93

Month cc mae rmse rae (%)

Jan 0.75 9.59 13.75 58.31
Feb 0.84 7.93 10.41 50.43
Mar 0.78 10.26 13.42 59.65
Apr 0.71 10.29 14.45 64.75
May 0.77 9.36 12.65 57.91
Jun 0.70 11.08 14.59 70.45
Jul 0.65 10.96 15.21 73.09

Aug 0.75 12.10 16.19 62.84
Sep 0.78 10.09 14.01 56.49
Oct 0.75 10.12 13.98 60.67
Nov 0.79 7.83 10.74 55.85
Dec 0.87 7.11 9.54 43.61

average 0.76 8.87 13.24 54.11

Table 5. Test results, lagged data: coefficients for the linear regression, January.

Lag
Variable −1 −2 −3 −4 −5 −6 −7 −8 −9 −10

Air temperature −0.77 −0.50 0.00 −1.14 0.00 0.00 0.00 0.93 0.00 0.00
Sol.duration 0.00 0.00 0.00 7.36 0.00 7.26 0.00 0.00 0.00 0.00
Wind speed −2.006 −2.50 −1.85 7.36 0.00 −1.14 0.00 0.00 0.00 −1.08

Rel.humidity −0.29 −0.19 −0.23 −0.22 0.00 0.00 0.29 0.00 0.21 0.00
Air pressure 0.00 1.97 −2.25 0.00 0.00 −2.47 0.71 0.48 −1.21 1.59

Traffic (×102) −0.82 −0.22 0.43 −0.32 0.45 −0.28 0.00 0.00 0.00 0.00
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Table 6. Test results, temporal decision tree regression.

Month cc mae rmse rae (%) Language

Jan 0.87 7.73 10.54 46.91 〈L〉, 〈L〉, 〈E〉, 〈E〉, 〈D〉, 〈D〉, 〈B〉, 〈B〉, 〈A〉, 〈=〉
Feb 0.86 7.39 9.70 47.65 〈L〉, 〈L〉, 〈D〉, 〈D〉, 〈A〉, 〈O〉, 〈E〉, 〈B〉
Mar 0.79 10.73 13.93 63.41 〈L〉, 〈L〉, 〈A〉, 〈A〉, 〈O〉, 〈O〉, 〈E〉, 〈E〉, 〈D〉, 〈D〉, 〈B〉
Apr 0.85 7.77 10.86 48.57 〈L〉, 〈E〉, 〈D〉, 〈B〉, 〈=〉
May 0.84 7.87 10.53 50.52 〈L〉, 〈O〉, 〈O〉, 〈E〉, 〈B〉, 〈=〉
Jun 0.82 9.07 11.60 58.00 〈L〉, 〈L〉, 〈E〉, 〈D〉, 〈D〉, 〈=〉
Jul 0.78 10.00 12.87 65.62 〈A〉, 〈E〉, 〈E〉, 〈D〉, 〈B〉, 〈B〉, 〈L〉, 〈=〉

Aug 0.83 10.82 13.90 55.97 〈L〉, 〈L〉, 〈A〉, 〈A〉, 〈D〉, 〈D〉, 〈=〉
Sep 0.81 9.50 13.17 53.77 〈L〉, 〈A〉, 〈B〉, 〈B〉, 〈E〉, 〈E〉, 〈O〉
Oct 0.81 9.31 12.42 55.58 〈L〉, 〈L〉, 〈A〉, 〈O〉, 〈O〉, 〈E〉, 〈E〉, 〈D〉, 〈B〉, 〈=〉
Nov 0.80 8.34 11.04 61.27 〈L〉, 〈A〉, 〈A〉, 〈O〉, 〈O〉, 〈E〉, 〈E〉, 〈D〉, 〈D〉, 〈B〉, 〈=〉
Dec 0.85 7.31 10.47 45.10 〈L〉, 〈L〉, 〈A〉, 〈A〉, 〈E〉, 〈E〉, 〈B〉, 〈B〉, 〈O〉, 〈D〉

average 0.83 8.82 11.75 54.36

7. Conclusions

In this paper, we consider an air quality modelling problem as an example of the
application of a novel symbolic multivariate temporal regression technique. Multivariate
temporal regression is the task of constructing a function that explains the behaviour of
a dependent variable over time, using current and past values of a set of independent
ones; air quality modelling and, in particular, modelling the values of a pollutant as a
function of meteorological and car traffic variables can be seen as a multivariate temporal
regression problem. Such problems are classically approached with a number of tech-
niques, which range from simple linear regression to recurrent neural networks; despite
their excellent statistical performances, in most cases, such models are unsatisfactory in
terms of their interpretability and explainability. Classic symbolic regression is an alterna-
tive to functional models; unfortunately, symbolic regression has not been very popular,
probably due to the fact that its statistical performances tend not to be good enough for
many problems. Temporal symbolic regression reveals itself as a promising compromise
between the two strategies: while keeping a symbolic nature, temporal symbolic regression
takes into account the temporal component of a problem in a native way. In this paper,
we not only apply a temporal symbolic regression to a real-world problem, but we also
show that it can be embedded into a feature selection strategy enriched with a language
selection one. The resulting approach shows an interesting potential, the statistical perfor-
mances of the extracted models being superior to those of both atemporal and temporal
classical approaches.
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