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A B S T R A C T

Symbolic learning is the logic-based approach to machine learning, and its mission is to provide algorithms
and methodologies to extract logical information from data and express it in an interpretable way. Interval
temporal logic has been recently proposed as a suitable tool for symbolic learning, specifically via the design of
an interval temporal logic decision tree extraction algorithm. In order to improve their performances, interval
temporal decision trees can be embedded into interval temporal random forests, mimicking the corresponding
schema at the propositional level. In this article we consider a dataset of cough and breath sample recordings of
volunteer subjects, labeled with their COVID-19 status, originally collected by the University of Cambridge. By
interpreting such recordings as multivariate time series, we study the problem of their automated classification
using interval temporal decision trees and forests. While this problem has been approached with the same
dataset as well as with other datasets, in all cases, non-symbolic learning methods (usually, deep learning-
based) have been applied to solve it; in this article we apply a symbolic approach, and show that it does
not only outperform the state-of-the-art obtained with the same dataset, but its results are also superior to
those of most non-symbolic techniques applied on other datasets. As an added bonus, thanks to the symbolic
nature of our approach, we are also able to extract explicit knowledge to help physicians characterize typical
COVID-positive cough and breath.
1. Introduction

Machine learning. Machine Learning (ML) is at the core of modern
Artificial Intelligence (AI). It can be defined as the process of au-
tomatically extracting the theory that underlies a phenomenon, and
expressing it in machine-friendly terms, so that it can be later used
in applications. The potential of ML is limitless, and it ranges from
learning rules that classify patients at some risk, to formalizing the
factors that influence pollution in a certain area, up to recognizing
voices, signatures, images, and many others. On one hand, ML methods
can be classified as parametric and nonparametric. Parametric methods
attempt to learn models in terms of a fixed-size set of parameters, and
are, therefore, based on strong assumptions on the structure of the func-
tion to be learnt; typical examples are linear/logistic regression models,
naive bayes, and neural networks, where the size of the model is fixed
prior to the learning phase. On the contrary, nonparametric methods
do not make structural assumptions, and their complexity is, instead,
driven by the complexity of the process that is to be seized; examples
are k-nearest neighbors, support vector machines, and decision trees. On
the other hand, ML techniques can be also regarded as functional or
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symbolic. A functional learning method learns an algebraic function that
represents the underlying theory; functions can be as simple as linear
functions, or as complex as deep neural networks. Symbolic learning,
on the other hand, is the process of learning a logical description that
represents a phenomenon; representative symbolic learning models are
decision trees and rule-based classifiers, which also happen to be nonpara-
metric. Symbolic learning is sometimes statistically less accurate than
functional one, as it based on representing coarse concepts in numerical
domains, but its results can be interpreted and explained by humans,
while functional models are generally considered black-boxes. Until
very recently, symbolic learning models were limited by their underly-
ing logical language, that is, propositional logic, and temporal, spatial,
and, in general, non-static data were usually dealt with propositional
methods by first flattening them using global features (e.g., instead
of considering the raw evolution of a patient’s temperature within
the monitored period, consider only the average temperature value).
These lossy procedures allow using off-the-shelf methods, but severely
hampers the interpretability of the results, and, in many cases, the
statistical performances of the extracted model as well. Interval temporal
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Table 1
Overview of the existing work in on COVID-19 diagnosis from audio recordings of cough (c), breath (b), or speech (s). Only works framing the problem as a binary classification
one are listed, and for each work the type of model deployed, the dataset, the model evaluation setting, and an indication of the best classification performance attained is shown.
For the datasets, CAM stands for Cambridge [8], V for Virufy [9], CO for COUGHVID [10], CW for Coswara [11], NO for NoCoCoDa [12], C19S for COVID-19 Sounds [13], DI for
DiCOVA [14], CCS and CSS for ComParE2021 CCS and CSS [15]. As for evaluation setting, CV stands for cross-validation, while LOOCV for leave one out cross-validation. As for
performance evaluation, AUC stands for area under the ROC curve, ACC for accuracy, and UAR for unweighted average recall.

Work c b s Model type Dataset Setting Best

2020

Brown et al. [8] ✓ ✓ LR, SVM CAM 10-fold CV AUC: 88
Imran et al. [16] ✓ CNN own 5-fold CV ACC: 92
Hassan et al. [17] ✓ ✓ ✓ LSTM own train/test ACC: 98
Laguarta et al. [18] ✓ CNN own train/test AUC: 97
Chaudhari et al. [9] ✓ ✓ CNN V, CO, CW train/test AUC: 77
Bansal et al. [19] ✓ CNN own train/test AUC: 71

2021

Melek [20] ✓ k-NN V, NO LOOCV ACC: 98
Xia et al. [21] ✓ ✓ ✓ CNN own 10-fold CV AUC: 74
Pahar et al. [22] ✓ CNN, LSTM own, CW 5-fold CV ACC: 95
Despotovic et al. [23] ✓ ✓ ✓ CNN, RF own 5-fold CV ACC: 89
Dash et al. [24] ✓ ✓ ✓ SVM CW, CAM 5-fold CV ACC: 85
Stasak et al. [25] ✓ DT own 5-fold CV ACC: 80
Han et al. [26] ✓ SVM C19S 5-fold CV ACC: 79
Muguli et al. [14] ✓ ✓ ✓ LR, RF DI 5-fold CV AUC: 75
Coppock et al. [27] ✓ ✓ CNN CAM 3-fold CV AUC: 91
Fakhry et al. [28] ✓ CNN CO holdout AUC: 99
Das et al. [29] ✓ LR, RF DI holdout AUC: 81
Xia et al. [13] ✓ ✓ ✓ SVM, CNN own holdout AUC: 75
Casanova et al. [30] ✓ ✓ CNN CCS, CSS holdout UAR: 76
Schuller et al. [15] ✓ ✓ SVM own holdout UAR: 74
Deshpande and Schuller [31] ✓ LSTM DI train/test AUC: 64

2022

Alkhodari et al. [32] ✓ CNN, LSTM CW LOOCV ACC: 95
Dentamaro et al. [33] ✓ ✓ CNN CAM, CW 10-fold CV ACC: 93
Tena et al. [34] ✓ RF own 10-fold CV ACC: 90
Chang et al. [35] ✓ CNN CO 5-fold CV ACC: 72
Nassif et al. [36] ✓ ✓ ✓ CNN, LSTM own holdout ACC: 98
Aly et al. [37] ✓ ✓ ✓ NN CW holdout ACC: 96
Han et al. [38] ✓ ✓ ✓ CNN C19S holdout AUC: 71
logic decision trees are a first step in the direction of improving the
expressive power of symbolic methods by replacing propositional logic
with a more expressive formalism in a classical, well-known schema.
They were introduced in [1,2], and have shown great potential as a
method to classify multivariate time series. Propositional decision trees
can be generalized into random forests [3] to obtain classifiers based
on several trees instead of a single one. Sets of trees tend to be more
performing than single trees, and while they are considered to be at
the verge between symbolic and functional learning, their symbolic
nature is still evident: sets of trees, as single trees, can be analyzed
and discussed, and, although the process of extracting rules is not
as immediate as in single trees, it is still possible [4–6]. Building on
this idea, interval temporal logic random forests can be used to improve
the performances of single interval temporal decision trees. Interval
temporal forests follow the same principles as the propositional ones: a
forest is a schema based on the idea of training different independent
trees on different samples and different attributes; in the temporal
case, moreover, they may also be trained on different interval relations
(in [7], the problem of selecting subsets of relations in the learning
phase, treated as feature selection problem, has been studied).
COVID-19. COVID-19 is a respiratory disease caused by the SARS-CoV2
virus. The disease was classified in 2019, and caused a pandemic that
occurred during the years 2020, 2021, and is still partially ongoing in
2022. The current scientific literature on COVID-19 is immense, and it
ranges everywhere from medicine to economy, sociology, psychology,
among many other fields. AI is no exception: as of April 2022, a simple
Scopus search for COVID-19 AND Artificial Intelligence
returns about 4000 entries. Perhaps one of the most appealing lines of
research, in this regard, deals with the possibility of deriving computa-
tional models for the diagnosis of COVID-19 from respiratory sounds
of human subjects, an idea already largely explored for diagnosing
other respiratory diseases such as bronchitis or pneumonia. Diagnosis
is usually enabled via coughs, breaths and oral speech audio samples,
which can be easily recorded with smartphone hardware. This has a
2

double advantage: it eases the availability of data, which can be quickly
crowdsourced throughout smartphone applications, and it facilitates
even more the actual diagnosis, which can be performed in real-
time by the same applications. Together, the whole process provides
a compelling, zero-cost, non-invasive alternative to the widely used
diagnostic (e.g., antigen or molecular) tests.
Artificial intelligence and COVID-19. Table 1 lists relevant works
published in 2020–2022 that attempts at the task of COVID-19 diag-
nosis via audio samples of cough, breaths, and/or speech, in various
combinations. While different models are not easily comparable, not
even in performances, this review reveals a unmistakable trend towards
using functional methods for this task (with the exception of [25],
where decision tree models are used), and, in fact, the concepts of
transparency and interpretability of the models are not even mentioned
in these contributions. This is in sharp contrast with the need of un-
derstanding the reasons that underly the decisions taken by intelligent
systems, and in particular those related to medical diagnoses; such a
need is widely shared in the community, and witnessed, for example,
by [39] (Call for Transparency of COVID-19 Models, appeared on Sci-
ence). The challenge arises, therefore, of devising a symbolic model for
the diagnosis of COVID-19 based on the acoustic characteristics of a
cough/breath sample, whose performances are at least comparable with
those of non-symbolic ones.
Structure of the paper. This paper is structured as follows. In Sec-
tion 2, we briefly review the concept of learning from temporal data.
Then, in Section 3, we lay down the foundations of interval temporal
decision trees and random forests. Finally, in Section 4, we frame
the problem as a binary classification one (that is, the model outputs
whether a subject/sample is positive or negative to COVID-19, similarly
to Table 1), solve it with temporal decision trees and random forests,
and interpret the resulting models, before concluding.

2. Learning from time series

Time series. A time series 𝑇 is a set of 𝑛 ≥ 1 variables that evolve over

time, where each variable is an ordered collection of 𝑁 numerical or
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categorical values described as follows:

𝑇 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴1 = 𝑎1,1, 𝑎1,2, … , 𝑎1,𝑁
𝐴2 = 𝑎2,1, 𝑎2,2, … , 𝑎2,𝑁

⋮
𝐴𝑛 = 𝑎𝑛,1, 𝑎𝑛,2, … , 𝑎𝑛,𝑁 .

(1)

A time series is called multivariate, if 𝑛 > 1; otherwise, it is univariate.
A univariate time series with categorical values is also known as a time
(or temporal) sequence; we use the term time series to denote multi-
variate, mixed (numerical and categorical) set of temporal variables.
Categorical values are fairly uncommon in time series, and typical
temporal datasets are usually numerical. A temporal dataset is a set
 = {𝑇1,… , 𝑇𝑚} of 𝑚 temporal instances defined over a set of 𝑛
attributes  = {𝐴1,… , 𝐴𝑛}, each of which is a univariate time series
having 𝑁 points. A categorical labeled temporal dataset is a temporal
dataset where the instances are associated to a target variable  =
{𝐶1,… , 𝐶𝑙}, also known as class variable. In this article, we assume that
temporal datasets have no missing values, or that missing values are
simply substituted by placeholders. Implicitly, we are also assuming
that temporal attributes are all sampled at the same granularity.
Learning from temporal data. As any other learning problem, classi-
fication of time series can be approached with functional or symbolic
methods. We recall that functional learning is the process of learning a
function that describes the theory of the underlying problem, while sym-
bolic learning aims at learning a logical description of the same theory.
Ensembles of classification methods are also common in the learning
realm, and while they are usually based on symbolic methods, they
may actually be combinations of any learning methods, and it may be
argued that they constitute a separate category. As an example, Bagnall
et al. [40] developed an ensemble of 35 classifiers for time series clas-
sification that includes, among others, Naive Bayes, C4.5 decision trees,
Support Vector Machines (SVMs) with linear and quadratic basis function
kernels and Random Forest, called Collective Of Transformation-based
Ensembles (COTE). Unlike classical (atemporal) learning, classification
of time series can also be instance-based (i.e., based on the notion
of distance/similarity between series) or not, its underlying ontology
can be point-based or interval-based, and the method itself can be
feature-based (i.e., based on the notion of extracting features from the
series, and then, using some atemporal classifier) or not. Finally, a
time series classification method may or may not require or allow
a transformation of the raw data. The plethora of existing methods
cannot be immediately partitioned into a taxonomy because (i) many
proposals present different combinations of these characteristics, and
(ii) there may be other dimensions that are not properly captured by
the above summary. Recently, Ruiz et al. [41] have presented a review
and experimental setup for recent algorithmic advances for multivariate
time series classification.
Functional learning. Several function-based approaches have been
proposed in the literature. Kakizawa et al. [42] developed optimal
bivariate discriminants using multivariate time-invariant forms of dis-
criminant functions. Kudo, in [43], proposed a methodology for classi-
fying sets of data points in a multidimensional space based on the com-
mon regions through which only time series of one class pass. Caiado
et al. [44] presented a new measure of distance between time series
based on the normalized periodogram which estimates the spectral den-
sity of a signal. Fulcher and Jones [45] presented a highly-comparative
method for learning feature-based classifiers for monovariate time se-
ries; their method automatically computes more than 9000 features
which are further automatically selected for classification tasks, and the
trained model is a linear discriminant classifier that fits a multivariate
normal density to each class using a pooled estimate of covariance.
The transformation method presented by Moskovitch and Shahar [46]
is tested in the same paper using Naive Bayes and Random Forest
classifiers, which, to some extent, can be seen as functional-based
3

learning. Functional methods for time series classification in which the
notion of distance plays a central role have been developed and tested
by Lines and Bagnall [47], in which the classifier is a Nearest Neigh-
bor [48,49]. These methods have been also tested on several datasets by
Ruiz et al. [41]. A generative deep learning model (i.e., an unsupervised
model that finds a good representation of the raw time series prior to
training a classifier) for time series classification has been proposed by
Malhotra et al. [50], where a Sequence Auto-Encoder (SAE) based on a
sequence-to-sequence model [51] is trained. Wang et al. [52] proposed
a simple but strong baseline based on convolutional neural networks
(CNNs), with three discriminative deep learning models (i.e., models
that directly learn the mapping between the raw input time series
and the output): multi-layer perceptrons, fully connected networks,
and residual networks. The spectrum of deep learning approaches for
classifying time series is wide and it is currently a very hot topic in
the time series mining research community. A systematic treatment of
deep learning methods is beyond the scope of this paper, but an up-
do-date and comprehensive review on this topic can be found in Fawaz
et al. [53], where the taxonomy for neural networks-based methods
from Längkvist et al. [54] is extended.
Symbolic learning. Diez et al. [55] developed an interpretable method
for building an ensemble of (base) classifiers with boosting [56]. The
method extracts a set of rules having only one antecedent. More-
over, point-based and interval-based predicates are defined to cope
with the temporal component. In particular, point-based predicates are
introduced to test the results obtained with boosting without using
interval-based predicates. To some extent, predicates can be seen as fea-
tures, and this method somehow falls into the realm of Inductive Logic
Programming (ILP). Geurts [57] proposed a feature-based approach
that integrates extracted temporal patterns into decision trees. Yamada
et al. [58] presented a decision tree-based procedure to classify time
series data where the splitting step is done by exhaustively searching
a time sequence that is present in data based on class and shape
information using Dynamic Time Warping (DTW) [59] as dissimilarity
measure. A similar approach to Yamada et al.’s is the one proposed
by Balakrishan [60] extending regression trees to deal with functional
variables (e.g., multivariate time series) and with standard (i.e., non-
functional) variables. To split the dataset, representative curves are
learned using clustering techniques with similarity measures (i.e., Eu-
clidean Distance and DTW), where the cluster representative is set to be
the instance which is closest (i.e., has the smallest combined distance)
to all other instances in the cluster, and then, reassign instances to the
clusters based on their distance to the representatives (i.e., complete-
link hierarchical clustering). Given two sets of signals/time traces
(i.e., the good and the bad set), the method proposed by Bartocci
et al. [61] finds a logic formula such that it is satisfied with high
probability by the good set and with low probability by the bad one.
In Baydogan and Runger’s [62] work, each (multivariate) time series
is represented includes also the first differences (representing trends)
for each numerical variable and each row is an instance. Bombara
et al. [63] proposed a decision tree-based framework for solving the
two-class classification problem involving finite signals (i.e., finite time
series) using Signal Temporal Logic classifiers. Shapelets [64] have been
extensively used in the field of learning from time series; this concept
has been used in decision trees to classify time series by Brunello
et al. [65]. Finally, Brunello et al. [1] developed a native, interval-based
decision tree learner where the instances are represented as timelines.

3. Interval temporal decision trees and forests

Interval temporal logic. While several different interval temporal
logics have been proposed in the recent literature (see, e.g., [66]),
Halpern and Shoham’s (HS) [67] is certainly the formalism that has
received the most attention, being a very natural choice to model
temporal intervals. Although from a logical point of view HS and its
fragments have been studied on the most important classes of linearly
ordered sets, machine learning datasets are finite structures; therefore,
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Table 2
Allen’s interval relations and their representation.

HS modality Definition w.r.t. the interval structure Example

𝑥 𝑦

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

𝑤 𝑧

⟨𝐴⟩ (after) [𝑥, 𝑦]𝑅𝐴[𝑤, 𝑧] ⇔ 𝑦 = 𝑤

⟨𝐿⟩ (later) [𝑥, 𝑦]𝑅𝐿[𝑤, 𝑧] ⇔ 𝑦 < 𝑤

⟨𝐵⟩ (begins) [𝑥, 𝑦]𝑅𝐵[𝑤, 𝑧] ⇔ 𝑥 = 𝑤 ∧ 𝑧 < 𝑦

⟨𝐸⟩ (ends) [𝑥, 𝑦]𝑅𝐸 [𝑤, 𝑧] ⇔ 𝑦 = 𝑧 ∧ 𝑥 < 𝑤

⟨𝐷⟩ (during) [𝑥, 𝑦]𝑅𝐷[𝑤, 𝑧] ⇔ 𝑥 < 𝑤 ∧ 𝑧 < 𝑦

⟨𝑂⟩ (overlaps) [𝑥, 𝑦]𝑅𝑂[𝑤, 𝑧] ⇔ 𝑥 < 𝑤 < 𝑦 < 𝑧
𝜑
f
M
o

i
i
o
t
a
e
a

we focus our attention on finite domains. Let [𝑁] be a finite, initial
subset of N+ of cardinality 𝑁 > 1, that is, [𝑁] = {1, 2,… , 𝑁}. A strict
nterval over [𝑁] is an ordered pair [𝑥, 𝑦], where 𝑥, 𝑦 ∈ [𝑁] and 𝑥 < 𝑦. If
we exclude the identity relation, there are 12 different binary ordering
relations between two strict intervals on a linear order, often called
Allen’s interval relations [68]: the six relations 𝑅𝐴 (adjacent to), 𝑅𝐿 (later
than), 𝑅𝐵 (begins), 𝑅𝐸 (ends), 𝑅𝐷 (during) and 𝑅𝑂 (overlaps), depicted
in Table 2, and their inverses, that is, 𝑅𝑋 = (𝑅𝑋 )−1, for each 𝑋 ∈
{𝐴,𝐿,𝐵,𝐸,𝐷,𝑂}. We interpret interval structures as Kripke structures,

ith Allen’s relations playing the role of accessibility relations. Thus,
e associate an existential modality ⟨𝑋⟩ with each Allen’s relation 𝑅𝑋 .

Moreover, for each 𝑋 ∈ {𝐴,𝐿,𝐵,𝐸,𝐷,𝑂}, the transpose of modality
𝑋⟩ is modality ⟨𝑋⟩ corresponding to the inverse relation 𝑅𝑋 of 𝑅𝑋 .

Now, let  = {𝐴,𝐴,𝐿,𝐿, 𝐵, 𝐵, 𝐸,𝐸,𝐷,𝐷,𝑂,𝑂}; Halpern and Shoham’s
nterval temporal logic (HS) [67] is a multi-modal logic with formulas
uilt from a finite, non-empty set  of atomic propositions (also

referred to as proposition letters), the propositional connectives ∨ and
¬, and a modality for each Allen’s interval relation, and well-formed
formulas of HS are generated by the grammar:

𝜑 ∶∶= 𝑝 ∣ ¬𝜑 ∣ 𝜑 ∨ 𝜑 ∣ ⟨𝑋⟩𝜑,

where 𝑝 ∈  and 𝑋 ∈  . The other propositional connectives and
constants (e.g., 𝜓1 ∧ 𝜓2 ≡ ¬(¬𝜓1 ∨ ¬𝜓2), 𝜓1 → 𝜓2 ≡ ¬𝜓1 ∨ 𝜓2 and
⊤ = 𝑝 ∨ ¬𝑝), as well as, for each 𝑋 ∈  , the universal modality [𝑋]
(e.g., [𝐴]𝜑 ≡ ¬⟨𝐴⟩¬𝜑), can be derived in the standard way. The strict
semantics of HS is given in terms of timelines (or, more commonly,
interval models) 𝑇 = ⟨I([𝑁]), 𝑉 ⟩,1 where [𝑁] = {1, 2,… , 𝑁} is a finite
linear order, I([𝑁]) is the set of all (strict) intervals over [𝑁] with
cardinality 𝑁 ⋅ (𝑁 −1)∕2, and 𝑉 is a valuation function 𝑉 ∶  → 2I([𝑁])

which assigns to every atomic proposition 𝑝 ∈  the set of intervals
𝑉 (𝑝) on which 𝑝 holds. The truth of a formula 𝜑 on a given interval
[𝑥, 𝑦] in an interval model 𝑇 , denoted by 𝑇 , [𝑥, 𝑦] ⊩ 𝜑, is defined by
structural induction on the complexity of formulas as follows:

𝑇 , [𝑥, 𝑦] ⊩ 𝑝 iff [𝑥, 𝑦] ∈ 𝑉 (𝑝), for each 𝑝 ∈  ;
𝑇 , [𝑥, 𝑦] ⊩ ¬𝜓 iff 𝑇 , [𝑥, 𝑦] ⊮ 𝜓 ;
𝑇 , [𝑥, 𝑦] ⊩ 𝜓1 ∨ 𝜓2 iff 𝑇 , [𝑥, 𝑦] ⊩ 𝜓1 or 𝑇 , [𝑥, 𝑦] ⊩ 𝜓2;
𝑇 , [𝑥, 𝑦] ⊩ ⟨𝑋⟩𝜓 iff there is [𝑤, 𝑧] s.t. [𝑥, 𝑦]𝑅𝑋 [𝑤, 𝑧] and 𝑇 ,

[𝑤, 𝑧] ⊩ 𝜓 ;

where 𝑋 ∈  . Note that, given that the set of relations is jointly
exhaustive with respect of [𝑁] (that is, at least one relation holds for
each pairs of intervals), the global existential operator, that allows to
express global patterns (i.e, ‘‘there exists an interval in [𝑁] where ...’’),
can be defined by the following disjunction:

⟨𝐺⟩𝜑 ∶= 𝜑 ∨
⋁

𝑋 ∈ 
⟨𝑋⟩𝜑.

1 We deliberately use the symbol 𝑇 to indicate both a time series and a
imeline.
4

Given a model 𝑇 = ⟨I([𝑁]), 𝑉 ⟩ and a formula 𝜑, we say that 𝑇 satisfies
if there exists an interval [𝑥, 𝑦] ∈ I([𝑁]) such that 𝑇 , [𝑥, 𝑦] ⊩ 𝜑. A

ormula 𝜑 is satisfiable if there exists an interval model that satisfies it.
oreover, a formula 𝜑 is valid if it is satisfiable on every interval model

r, equivalently, if its negation ¬𝜑 is unsatisfiable. Observe that HS is
interpreted, here, with a purely interval semantics, in which the truth of
a propositional letter over a given interval does not influence the truth
of the same propositional letter over any other interval, regardless of
their relative relationship. This is the most general choice, over which
we build the theory of interval temporal decision trees; other choices
are possible (see, e.g. [69,70]), but are not explored here.
Temporal decision trees. Let  = {𝑇1,… , 𝑇𝑚} be a temporal dataset
of 𝑚 instances, where each is a multivariate time series described by 𝑛
attributes {𝐴1,… , 𝐴𝑛}. Given an instance 𝑇 ∈  , we denote the value of
an attribute 𝐴 at the time point 𝑡 by 𝐴(𝑡). Now, let 𝑓 be a dynamic feature
function of a variable 𝐴; in its simplest form, 𝑓 is a scalar descriptor
for 𝐴 within any interval of the series (e.g., the average value of 𝐴
over the interval). The key idea of interval temporal decision trees [2]
is that decisions are taken over intervals. A temporal decision tree
starts off by considering the whole set of instances from an initial time
point (e.g., the first temporal value), and computes a predetermined
set of dynamic features for each one of the 𝑁 ⋅ (𝑁 − 1)∕2 non-point
ntervals of each series; then, it searches through all possible interval-
nterval relations, and it establishes which other interval, and which
ther dynamic feature over that interval, is the most informative in
he considered sub-dataset. In this way, it applies the same abstract
pproach of the classical static decision tree up until a dataset is small
nough, or pure enough, so that a stopping criterion can be applied
nd a leaf can be created. For each possible feature 𝑓 , let 𝑑𝑜𝑚(𝑓 (𝐴))

denote the set of possible values that 𝑓 takes over 𝐴 throughout  .
The temporal dataset  entails a propositional alphabet  defined as
follows:

 = {𝑓 (𝐴) ⋈ 𝑎 ∣ 𝐴 ∈ ,⋈∈ {<,≤,=,≥, >} and 𝑎 ∈ 𝑑𝑜𝑚(𝑓 (𝐴))}.

The set  is the natural generalization of the set of propositional
letters that implicitly emerges in inductive processes from static data
(e.g., in a static dataset, the propositional letter fever greater than 38
degrees). The main difference between the two cases, propositional and
temporal, is that in the latter case propositions in  are given an
interval semantics, that is, they are evaluated over intervals of time;
this is a natural choice that emerges from the continuous nature of
the processes described by time series, in which evaluations based on
punctual values make little sense. To fix ideas, consider the following
example. Given a time interval [𝑥, 𝑦] and an attribute 𝐴, we could ask
whether 𝐴 > 𝑎 holds on the interval, which is positively answered
if every value of 𝐴 is higher than 𝑎 within the interval. However,
in order to take full advantage of interval-based semantics, we ask
questions that are more generally in the form of 𝑓 (𝐴) > 𝑎; this approach
can also express questions such as 𝐴 > 𝑎 (that is, when 𝑓 is the
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Fig. 1. Example of a generic temporal decision tree.

inimum function), but it additionally allows the tree to extract more
pecific information from the interval. As it turns out, the literature on
emporal feature extraction provides many scalar functions that can be
sed as dynamic features (note that any interval of a series is, itself, a
eries). Therefore, in general, the portfolio of possible feature extraction
unctions is very wide, and ranges from the simple minimum, maximum,
verage functions, to more complex statistical functions such as those
tudied in [71]. In cases where a temporal dataset presents several
ttributes, choosing which feature functions should be applied to which
ttribute is a feature selection problem, which can be approached, for
xample, via systematic search, via standard selection techniques (pos-
ibly adapted to the temporal case), or simply via an arbitrary choice
riven by inductive bias. In temporal decision trees the univariate split-
ecisions (or, simply, decisions) that partition a set of instances at a
pecific node are of type:

= {⟨𝑋⟩(𝑓 (𝐴) ⋈ 𝑎) ∣ 𝑋 ∈  ∪ {=}}.

o, binary temporal decision trees 𝜏 are formulas of the following gram-
ar:

∶∶= (𝑆 ∧ 𝜏) ∨ (¬𝑆 ∧ 𝜏) ∣ 𝐶,

here 𝑆 ∈  is a decision and 𝐶 ∈  is a class. Thus, a temporal
decision tree is a rooted tree whose leaves are labeled with classes, and
whose edges are labeled with decisions; an object of type ⟨𝑋⟩(𝑓 (𝐴) ⋈ 𝑎)
or of type ¬⟨𝑋⟩(𝑓 (𝐴) ⋈ 𝑎) (or, equivalently, [𝑋]¬(𝑓 (𝐴) ⋈ 𝑎)) is called
edge label. Decisions (and labels) of type ⟨=⟩(𝑓 (𝐴) ⋈ 𝑎) are called
propositional, and they are the standard ones in propositional decision
trees. We denote the root of 𝜏 by 𝑟𝑜𝑜𝑡(𝜏), and we use 𝓁1,𝓁2,… (resp.,
𝜈1, 𝜈2,…) to denote the leaves (resp., nodes, both leaf and non-leaf ones).
Each non-leaf node 𝜈 of 𝜏 has a left (resp., right) child 𝐿(𝜈) (resp., 𝑅(𝜈))
whose edge is decorated with 𝑆 ∈ , each non-root node 𝜈 has a
parent 𝑃 (𝜈), and each leaf 𝓁 is labeled with a class, denoted by 𝐶(𝓁).
By convention, we assume that edge labels of type ⟨𝑋⟩𝑝 are always
left (that is, they always label an edge from a node to its left child). A
path of length ℎ between two nodes of 𝜏 is a finite sequence of nodes
𝜈ℎ, 𝜈ℎ−1,… , 𝜈0 such that 𝜈𝑖+1 = 𝑃 (𝜈𝑖), for each 𝑖 = 0,… , ℎ − 1; if 𝜈ℎ is
𝑟𝑜𝑜𝑡(𝜏) and 𝜈0 is a leaf 𝓁, then the path 𝑟𝑜𝑜𝑡(𝜏) ⇝ 𝓁 is called branch. In
general, a path of length ℎ is decorated with ℎ temporal and atemporal
decisions on its edges, denoted by 𝜈ℎ

𝑆ℎ
⇝ 𝜈ℎ−1

𝑆ℎ−1
⇝ ⋯

𝑆1
⇝ 𝜈0, where 𝑆𝑖 ∈ ,

for each 𝑖 = 1,… , ℎ (see Fig. 1).
Interpreting temporal decision trees. In order to define the semantics
of temporal decision trees, we need the notions of temporal path-
formula, satisfiability of a temporal path-formula, and temporal dataset
splitting. A temporal path-formula 𝜑𝜈ℎ⇝𝜈0 of a path 𝜈ℎ

𝑆ℎ
⇝ 𝜈ℎ−1

𝑆ℎ−1
⇝ ⋯

𝑆1
⇝

𝜈0, where 𝑆𝑖 ∈ , in a temporal decision tree 𝜏, is inductively defined
5

on ℎ:
• if ℎ = 0, then 𝜑𝜈0⇝𝜈0 = ⊤;
• if ℎ > 0, then let 𝜑𝜈ℎ−1⇝𝜈0 = 𝜉′ℎ−1 ∧ … ∧ 𝜉′1 ∧ ⊤, and let us call 𝜉′𝑖

positive if it has the form 𝜉′𝑖 = ⟨𝑋⟩(𝑓 (𝐴) ⋈ 𝑎∧𝜓𝑖), 𝜉′𝑖 = (⟨𝑋⟩(𝑓 (𝐴) ⋈
𝑎) ∧ 𝜓𝑖), or 𝜉′𝑖 = (𝑓 (𝐴) ⋈ 𝑎 ∧ 𝜓𝑖) with 𝑋 ∈  , and negative
otherwise. Then 𝜑𝜈ℎ⇝𝜈0 is defined by cases:

– if 𝜈ℎ−1 = 𝑙𝑒𝑓 𝑡(𝜈ℎ), then 𝜑𝜈ℎ⇝𝜈0 = 𝑆ℎ∧𝜉ℎ−1∧…∧𝜉1∧⊤, where,
for 1 ≤ 𝑖 ≤ ℎ − 1:

* 𝜉𝑖 = ⟨𝑋⟩(𝑓 (𝐴) ⋈ 𝑎 ∧ 𝜉′𝑖 ), if 𝑆ℎ = ⟨𝑋⟩(𝑓 (𝐴) ⋈ 𝑎) and 𝜉′𝑖
is positive;

* 𝜉𝑖 = (𝑓 (𝐴) ⋈ 𝑎 ∧ 𝜉′𝑖 ), if 𝑆ℎ = 𝑓 (𝐴) ⋈ 𝑎 and 𝜉′𝑖 is positive;
* 𝜉𝑖 = (⟨𝑋⟩(𝑓 (𝐴) ⋈ 𝑎) ∧ [𝑋](𝑓 (𝐴) ⋈ 𝑎 → 𝜉′𝑖 )), if 𝑆ℎ =
⟨𝑋⟩(𝑓 (𝐴) ⋈ 𝑎) and 𝜉′𝑖 is negative;

* 𝜉𝑖 = (𝑓 (𝐴) ⋈ 𝑎 ∧ (𝑓 (𝐴) ⋈ 𝑎 → 𝜉′𝑖 )), if 𝑆ℎ = 𝑓 (𝐴) ⋈ 𝑎
and 𝜉′𝑖 is negative;

– if 𝜈ℎ−1 = 𝑟𝑖𝑔ℎ𝑡(𝜈ℎ), then 𝜑𝜈ℎ⇝𝜈0 = (𝑆ℎ) ∧ 𝜉ℎ−1 ∧ … ∧ 𝜉1 ∧ ⊤,
where, for 1 ≤ 𝑖 ≤ ℎ − 1,

* 𝜉𝑖 = 𝜉′𝑖 , if 𝜉′𝑖 is positive;
* 𝜉𝑖 = (𝑆ℎ ∧ 𝜉′𝑖 ), if 𝜉′𝑖 is negative.

emporal path-formulas generalize their propositional counterpart,
here propositional path-formulas are simply conjunctions of the de-

isions. Now, we need to define how they are actually interpreted. In
he case of static decision trees, from a dataset associated to a node
ne immediately computes the two datasets that are entailed by a
ropositional decision. In the temporal case, however, this step requires
bigger effort. We start by assuming that each temporal instance 𝑇

s anchored to a set of intervals in the set I([𝑁]) ∪ [0, 1], denoted by
.𝑟𝑒𝑓𝑠. At the beginning of the learning phase, 𝑇 .𝑟𝑒𝑓𝑠 = {[0, 1]} for
very 𝑇 , where [0, 1] is an additional, virtual interval that we interpret
s a privileged observation point from which the learning takes place.
emporal decision tree learning is a local learning process; the local
ature of decision trees does not transpire at the static level, but it
ecomes evident at the modal one. Every decision potentially entails
ew reference intervals for every instance of a dataset. In particular,
iven a time series 𝑇 with associated 𝑇 .𝑟𝑒𝑓𝑠, and given a decision 𝑆,
e can compute a set of new reference intervals 𝑓 (𝑇 .𝑟𝑒𝑓𝑠, 𝑆) as:

[𝑤, 𝑧] ∈ I([𝑁]) ∣ ∃[𝑥, 𝑦] ∈ 𝑇 .𝑟𝑒𝑓𝑠∧ [𝑥, 𝑦]𝑅𝑋 [𝑤, 𝑧] ∧𝑇 , [𝑤, 𝑧] ⊩ 𝑓 (𝐴) ⋈ 𝑎}

if 𝑆 = ⟨𝑋⟩𝑓 (𝐴) ⋈ 𝑎, and as:

{[𝑤, 𝑧] ∈ 𝑇 .𝑟𝑒𝑓𝑠 ∣ 𝑇 , [𝑤, 𝑧] ⊩ 𝑓 (𝐴) ⋈ 𝑎}

f 𝑆 = 𝑓 (𝐴) ⋈ 𝑎. When 𝑆 is clear from the context, we use 𝑇 .𝑟𝑒𝑓𝑠′ to
denote 𝑓 (𝑇 .𝑟𝑒𝑓𝑠, 𝑆). For a decision 𝑆 ∈ , we use the notation 𝑇 ⊩ 𝑆
or 𝑇 , 𝑇 .𝑟𝑒𝑓𝑠 ⊩ 𝑆 (respectively, 𝑇 ⊩ ¬𝑆 or 𝑇 , 𝑇 .𝑟𝑒𝑓𝑠 ⊩ ¬𝑆) to identify
the members of  𝐿(𝜈) (respectively,  𝑅(𝜈)). The notion of a time series
satisfying a decision allows us to discuss the instance semantics of a
temporal decision tree. Given a temporal decision tree 𝜏 and a temporal
instance 𝑇 ∈  anchored to 𝑇 .𝑟𝑒𝑓𝑠 at 𝑟𝑜𝑜𝑡(𝜏), the class assigned by 𝜏 to
𝑇 , denoted by 𝜏(𝑇 , 𝑇 .𝑟𝑒𝑓𝑠), is inductively defined as:

𝐶 if 𝜏 = 𝐶,
𝜏𝐿(𝑇 , 𝑇 .𝑟𝑒𝑓𝑠′) if 𝜏 = (𝑆 ∧ 𝜏𝐿) ∨ (¬𝑆 ∧ 𝜏𝑅) and 𝑇 , 𝑇 .𝑟𝑒𝑓𝑠 ⊩ 𝑆;
𝜏𝑅(𝑇 , 𝑇 .𝑟𝑒𝑓𝑠) if 𝜏 = (𝑆 ∧ 𝜏𝐿) ∨ (¬𝑆 ∧ 𝜏𝑅) and 𝑇 , 𝑇 .𝑟𝑒𝑓𝑠 ⊩ ¬𝑆;

where 𝑆 ∈ . Moreover, we denote by 𝜏(𝑇 ) = 𝜏(𝑇 , {[0, 1]}), where [0, 1]
is the privileged observation point; we call 𝜏(𝑇 ) the instance semantics
of 𝜏. As a whole, a temporal decision tree is interpreted over a labeled
dataset  via the dataset semantic relation⊩𝜃 , which generalizes⊩ from
single instances to datasets. The parameter 𝜃 can represent any suitable
measure of statistical performances of 𝜏 on  , and it can be obtained
by systematic application of the instance semantics to (sub)sets of  ;
we simply say that  𝜃-satisfies 𝜏, and denote it by:

 ⊩ 𝜏.
𝜃



Artificial Intelligence In Medicine 137 (2023) 102486F. Manzella et al.

t
p
g
o

d
(

I

I
o
t
s
⋈
(
T

I

I

b
a
r
c

t
𝑁

p
T

o

𝑣

F

a
i
t
d
b
a
u
w
l
a
i
t
o
w
a
o
h
t
t
w
c
a
o
T
m
i
t
t
d
P
o
d
w
t
f
f
t
e
t
d

4

D
c
b
I
9
i
o
(

Information-based learning. Propositional decision trees date back
o Belson’s [72] seminal work, based on which in [73] the authors
roposed their innovative solution as an alternative to functional re-
ression. The algorithm proposed in [74] is the first implementation
f a decision tree for classification, but CART [75], ID3 [76], and

C4.5 [77], are the most well-known. All of these algorithms follow the
same recursive schema: they start with a tree composed of a single leaf
node, associated with the whole dataset; they check for the existence
of a split-decision satisfying certain criteria, and if such a decision
exists, it is used for splitting the dataset into two sub-datasets (the
set of instances satisfying the decision, and the set of instances not
satisfying it), which are then passed to the children; the same routine
is called on the child nodes. Because all of these algorithms share
similar principles, they can be seen as special cases of the general
algorithm for information-based learning of temporal decision trees, which
we refer to as TDT (see Algorithm 1). Note that information-based
learning is a general, greedy and sub-optimal approach to decision tree
induction (optimal decision tree induction is knowingly NP-hard [78]).
Entropy-based learning of (temporal) decision trees is a particular case
of information-based learning, and the most common one. It works as
follows. Let 𝜋𝑖 be the fraction of instances labeled with class 𝐶𝑖 in a
ataset  with 𝑙 distinct classes. Then, the information conveyed by 
or entropy of  ) is computed as:

nfo( ) = −
𝑙

∑

𝑖=1
𝜋𝑖 log𝜋𝑖.

ntuitively, the entropy is inversely proportional to the purity degree
f  with respect to the class values. In binary trees, splitting, which is
he main greedy operation, is performed over a dynamic feature 𝑓 , a
pecific attribute 𝐴, a threshold value 𝑎 ∈ 𝑑𝑜𝑚(𝑓 (𝐴)), and the operator
. Let 𝑆(𝑓,𝐴, 𝑎,⋈) be the decision entailed by 𝑓,𝐴, 𝑎, and ⋈, and let
𝑒, 𝑢) be the partition of  entailed by 𝑆(𝑓,𝐴, 𝑎,⋈) (as defined above).
he splitting information of 𝑆 = 𝑆(𝑓,𝐴, 𝑎,⋈) is defined as:

nfoSplit( , 𝑆) =
|𝑒|
| |

Info(𝑒) +
|𝑢|
| |

Info(𝑢).

n this way, we can define the information gain of a decision as:

InfoGain( , 𝑆) = Info( ) − InfoSplit( , 𝑆).

In information-based learning, the best candidate split-decision at
each node is selected as the one maximizing the information gain.
Note that on a dataset with 𝑚 instances and 𝑛 attributes the expected
(average) time complexity of the algorithm is given by the recursion
𝑇 (𝑚, 𝑛) = 2 ⋅ 𝑇 (𝑚2 , 𝑛) + 𝑐(𝑚, 𝑛), where 𝑐(𝑚, 𝑛) is the cost of finding the
est split-decision at any node. The local cost heavily impacts on the
lgorithm complexity, and it is a direct function of the number of
elations and propositional letters. In the propositional case (i.e., in
lassic algorithm such as CART, ID3, C4.5), the local cost at a node

with 𝑗 instances is (𝑗 ⋅ 𝑛), thus the overall cost is (𝑛 ⋅ 𝑚 log𝑚). In
he temporal case, the local cost depends on the number of points

, and the overall cost becomes (𝑁(𝑁 − 1) ⋅ 𝑛 ⋅ 𝑚 log𝑚). Established
open-source implementations of decision trees include the classes Deci-
sionTreeClassifier in Scikit-learn [79] (a Python algorithm implementing
CART ), J48 in WEKA [80] (a Java algorithm implementing C4.5), and
the DecisionTree.jl package [81] available in the Julia programming
environment [82]. In [2], an implementation of TDT based on J48 was
presented. A more modern and optimized implementation of the same
algorithm is available in the Julia package ModalDecisionTrees.jl [83] (a
fork of DecisionTree.jl). Fig. 2 contains a schematic representation of the
rocess of learning a temporal decision tree from a temporal dataset.
emporal random forests. In the propositional case, the generaliza-

tion from single trees to forests of trees is relatively easy. The idea
that underlies the so-called random forests model [3] is the follow-
ing one: different trees can be learned from different subsets of the
training set, using different subsets of attributes. Each tree is precisely
a propositional decision tree; a random forest classifier, however, is a
6

p

classifier whose instance semantics depends on many trees, and it is
computed via some voting function. So, introducing temporal random
forest models can be done in the same way. A temporal random forest
is pair ( , 𝑣), where  is a collection of 𝑘 temporal decision trees, that
is,  = {𝜏1,… , 𝜏𝑘}, and 𝑣 ∶ 𝑘 →  is a voting aggregation function of all
the unit votes of each temporal decision tree 𝜏 ∈  . Given a temporal
random forest ( = {𝜏1,… , 𝜏𝑘}, 𝑣) and a temporal instance  ∈  , the
class assigned by  to 𝑇 , denoted by  (𝑇 ), and called instance semantics
f  , is defined as:

(𝜏1(𝑇 ),… , 𝜏𝑘(𝑇 )).

or a random forest ( , 𝑣) and a temporal dataset  , the notion  ⊩𝜃
is obtained, as in the case of the single tree, by the systematic

pplication of the instance semantics to a certain (sub)set of the train-
ng dataset. Random forests differ from simple deterministic decision
rees in many subtleties, all related to the learning algorithm. Such
ifferences, along with the nature of the model, transform a purely sym-
olic method, such as decision trees, into a hybrid symbolic-functional
pproach. A first attempt towards random forests was made in [84],
sing the so-called random subspace method. Breiman’s proposal [3],
hich can be considered the standard approach to random forests, was

ater introduced in the R learning package [85], but random forests
re part of a more general approach to combine several classifiers
nto a single one, known as bagging, which is still an ongoing research
opic, as proven by very recent contributions such as [86], among
thers. Julia [82] incorporates a class to generalize trees into forests;
e used such a class to create a temporal random forest (TRF) learning
lgorithm. TRF is based on a generalized version of TDT that allows
ne to use, at each step, only 𝑛𝑠𝑢𝑏 attributes to find the best split while
aving, at its disposal, only 𝑚𝑠𝑢𝑏 instances, as shown in Algorithm 1;
his is a randomized version of the interval temporal logic decision
ree learning strategy, which degenerates into the deterministic version
hen 𝑛𝑠𝑢𝑏 = 𝑛 and 𝑚𝑠𝑢𝑏 = 𝑚. This solution generalizes the propositional

ase of random forests in which, at each step of building a tree, only
subset of attributes is used as shown in the high-level description

f TRF in Algorithm 2. In terms of implementation, both TDT and
RF need special attention to the supporting data structures. As a
atter of fact, both the propositional and the temporal versions of the

nformation-based decision tree learning algorithm run in polynomial
ime w.r.t. the size of the dataset, but the overhead introduced in the
emporal case can be quite relevant, because of the high number of
ecisions that can be taken at each split. To solve this issue, the function
reprocess entails, among other steps, building a lookup table keyed
n the tuple (𝑇 , [𝑥, 𝑦], 𝑋, 𝐴, 𝑎, 𝑓 ), that returns the truth value of the
ecision ⟨𝑋⟩(𝑓 (𝐴) ⋈ 𝑎) of the instance 𝑇 on the interval [𝑥, 𝑦]. In this
ay, at learning time, checking the information conveyed by a decision

akes (virtual) constant time, plus the time to compute the information
unction. Interestingly enough, such a structure is particularly useful
or TRF : as a matter of fact, it can be computed beforehand and
hen shared by all instances of TDT without costly recomputations,
ffectively improving the overall experimental complexity with respect
o 𝑘 independent executions of TDT. An implementation of temporal
ecision forests is available in the ModalDecisionTrees.jl Julia package.

. Data and experiments

ataset. The dataset used in this paper, presented in [8], was originally
rowdsourced and compiled by researchers at the University of Cam-
ridge, and it is available upon request; in Table 1 we refer to as CAM.
t has the following structure. The dataset in its entirety is composed of
986 audio samples recorded by 6613 volunteers. Each audio recording
s encoded in the Waveform Audio File (WAV) format, and consists
f a discrete sampling of the perceived sound pressure caused by
continuous) sound waves. Out of all volunteers, 235 declared to be
ositive to COVID-19. The subjects are quasi-normally distributed by
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Fig. 2. A schematic representation of the process of learning from a temporal dataset.
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Algorithm 1: High-level description of TDT.
function 𝑇𝐷𝑇 ( , 𝑛𝑠𝑢𝑏):

𝜏 ← initialize an empty decision tree
𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠( )
𝑟𝑜𝑜𝑡(𝜏) ← 𝐿𝑒𝑎𝑟𝑛( , 𝑛𝑠𝑢𝑏)
return 𝜏

end
function 𝐿𝑒𝑎𝑟𝑛( , 𝑛𝑠𝑢𝑏):

if a stopping condition applies then
return 𝐶𝑟𝑒𝑎𝑡𝑒𝐿𝑒𝑎𝑓𝑁𝑜𝑑𝑒( )

end
𝑆 ← 𝐹 𝑖𝑛𝑑𝐵𝑒𝑠𝑡𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛( , 𝑛𝑠𝑢𝑏)
(𝑒, 𝑢) ← 𝑆𝑝𝑙𝑖𝑡( , 𝑆)
𝜈 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑁𝑜𝑑𝑒( )
𝐿(𝜈) ← 𝐿𝑒𝑎𝑟𝑛(𝑒)
𝑅(𝜈) ← 𝐿𝑒𝑎𝑟𝑛(𝑢)
return 𝜈

end

age, with an average between 30 and 39 and a frequency curve slightly
left-skewed towards younger ones; the data is not gender-balanced,
with more than double as many male subjects than female ones. Beside
recording sound samples, subjects were asked to fill in a very brief
clinical history, plus information about their geographical location.
In [8], this data was originally used to derive smaller datasets, each
posing a different form of the same task of COVID-19 diagnosis. In
7

particular, the location of the subject was used to distinguish among p
Algorithm 2: High-level description of TRF.
function 𝑇𝑅𝐹 ( , 𝑘, 𝑚𝑠𝑢𝑏, 𝑛𝑠𝑢𝑏):

 ← ∅
foreach 𝑖 ∈ [1,… , 𝑘] do

 ′ ← 𝑆𝑢𝑏𝑠𝑒𝑡𝑆𝑎𝑚𝑝𝑙𝑒( , 𝑚𝑠𝑢𝑏)
𝜏 ← 𝑇𝐷𝑇 ( ′, 𝑛𝑠𝑢𝑏)
 ←  ∪ {𝜏}

end
return 

end

those that, at the moment of the recording, were living in almost-
COVID-free countries; by combining this information with the subjects’
declaration concerning a diagnostic test for COVID-19, only a subset
of the subjects who declared to be negative could indeed be reliably
considered as negative. With this approach, three tasks were designed:
(i) to distinguish between declared positive subjects and non-positive
ones that have a clean medical history, have never smoked, have no
ymptoms, and live in countries in which the virus spread at that
oment was very low (so they can be reliably considered negative sub-

ects); (ii) to distinguish between declared positive subjects with cough
s symptom and non-positive ones that have a clean medical history,
ave never smoked, have cough as a symptom, and live in countries in
hich the virus spread at that moment was very low (so they can be

eliably considered negative subjects with a cough); (iii) to distinguish
etween declared positive subjects with cough as symptom and non-
ositive ones that have asthma, that have never smoked, have cough
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as a symptom, and live in countries in which the virus spread at that
moment was very low (so they can be reliably considered negative
subjects with cough and asthma). We refer to these tasks and datasets
as 𝑇𝐴1, 𝑇𝐴2, and 𝑇𝐴3. To counteract the small amount of control
data, the authors of the original dataset also produced and released
two augmented versions for 𝑇𝐴2 and 𝑇𝐴3 (referred, here, as 𝑇𝐴2+
and 𝑇𝐴3+, respectively), obtained with standard audio augmentation
methods. In [8], the authors considered three versions of each task,
which differ by how subjects are represented, that is, using only their
cough sample, only their breath sample, or both; note that, although
in their original release temporal decision trees and forests were not
designed for multi-frame (also known and multimodal) representation
of the data, such an extension was studied in [87], thus these models
are also able to treat subjects represented as the union of a cough
and a breath sample. With respect to the original work, we have
eliminated 14 instances that presented cough/breath labeling mistakes,
empty audio recording, and/or a too noisy background; barring such
difference, it is possible to directly compare our results with the ones
from the original paper and from other models trained on the same
data. Moreover, because of the nature of interval temporal trees, it
also makes sense to explore learning from single coughs/breath cycles,
instead of whole recordings which present several episodes; for each
version of the dataset, we produced a segmented variant containing
single episodes from the original ones.
Pre-processing techniques. In audio signal processing, it is customary
to extract spectral representations of sounds, facilitating their interpre-
tation in terms of audio frequencies. To this end, we adopt a variation
of a widespread representation technique, which goes under the name
of Mel-Frequency Cepstral Coefficients (MFCC). MFCC, first proposed
in [88], is still the preferred technique for extracting sensible spectral
representations of audio data, and its use in machine learning has been
fruitful for tackling difficult AI tasks, such as speech recognition, music
genre recognition, noise reduction, and audio similarity estimation.
Computing the MFCC representation involves the following steps: (i)
the raw audio is divided into (often overlapping) chunks of small size
(e.g. 25 ms), and a Discrete Fourier Transform (DFT) is applied to each of
the chunks, to produce a spectrogram of the sound at each chunk, that
is, a continuous distribution of sound density across the frequency spec-
trum; (ii) the frequency spectrum is then converted and represented in
the so-called mel scale, a logarithmic representation which causes the
frequency space to better reflect human ear perception of frequencies;
(iii) a set of 𝑛 triangular band-pass filters is convolved across the
frequency spectrum, discretizing it into a finite number of frequencies;
(iv) a Discrete Cosine Transform (DCT) is applied to the logarithm of
the discretized spectrogram along the frequency axis, which compresses
the spectral information at each point in time into a fixed number of
coefficients. This transformation does not modify the temporal ordering
of the audio events; nevertheless, the classical approach at this point is
to feed data to off-the-shelf classification methods which do not make
use of such ordering (e.g., SVMs, neural networks). Moreover, step (𝑖𝑣)
does not preserve the spectral component, which makes this description
not directly interpretable in terms of sound frequencies; as such, we
applied MFCC up to step (𝑖𝑖𝑖), ultimately obtaining a multivariate time
series representation where the 𝑛 attributes describe the power of the
different sound frequencies. Furthermore, different techniques were
used to clean and normalize the data prior to the MFCC step: (i) a
noise gate filter to attenuate signals that register below a threshold to
remove background noises; (ii) a peak normalization filter where the
amplitude is scaled on the highest signal level present in the record-
ing granting consistent amplitude between audio tracks; (iii) silence
removal filter to remove unwanted long silences. Additionally, in order
to make the model invariant to different tones, a pitch normalization step
was applied, where instead of the mel scale, the frequency spectrum
was represented via the semitone scale, which is still logarithmic, but
relative to a fundamental frequency. Such a fundamental frequency
8

for each sample was found by means of a Fast Fourier Transform d
(FFT) as the most prevalent frequency between 200 Hz and 700 Hz,
which is generally accepted as appropriate for human cough in normal
conditions [89,90].
Experimental settings. For each of the 30 problems described in a
previous paragraph, a number of temporal decision trees and temporal
random forests were trained and evaluated via standard performance
metrics for binary classification: overall accuracy (acc), precision (prec),
recision (rec) and F1-score (𝐹1). To minimize the bias, datasets were
alanced by downsampling the majority class, and randomly split into
wo (balanced) sets for training (80%) and test (20%). This process
as repeated 10 times (randomized 10-folds cross-validation), and

he average and standard deviation of the performance metrics were
onsidered. Furthermore, for any training/test split, random forests
ere run 5 times with different initial random conditions, and their
verage performance was considered. As for the parametrization of
andom forests, after a pre-screening phase, we set 𝑚𝑠𝑢𝑏 = 70% of the
ardinality of each training set (𝑚), 𝑘 = 100, and 𝑛𝑠𝑢𝑏 = 50% of the
umber of attributes (𝑛). While experiments for single decision trees
ere run with a standard pre-pruning setting, that is, minimum entropy
ain of 0.01 for a split to be meaningful and maximum entropy at
ach leaf of 0.6, random forests grow full trees. In all cases we let

be in {≤,≥}. As for 𝑓 , as we have already mentioned, there are
any possible choices; in order to maximize the interpretability of

ur models, however, we used only minimum and maximum, in their
oftened version, which correspond to the 20𝑡ℎ and the 80𝑡ℎ percentile,
espectively; thus 𝑓 ∈ {min80,max80}. As for the pre-processing, the
hunk size and overlap for the DFT were fixed to the standard values
f 25 ms and 10 ms, respectively. Pre-screening was also applied to the
arameters that partially drive the form of the data, that is, number
f frequencies (i.e., the number of attributes 𝑛), the size of the moving
verage filter (𝑤) used to lower the number of resulting points, and
tep of the moving window (𝑠); as a result of such a pre-screening,
e fixed 𝑛 = 30, 𝑤 = 30, and 𝑠 = 20. In any case, for further
ata dimensionality reduction, the resulting series were capped at a
aximum of 50 time points each. The pre-screening also found that
oise gate, peak normalization and silence removal were effective for
ough samples, while peak normalization and silence removal were
ffective for breath samples. Pitch normalization proved to be effective
oth with cough and breath samples; furthermore, all audio samples
ith a sample rate lower than 16 000 Hz were discarded. Experiments
ere run in a Julia environment, using open-source packages: more

pecifically, the WAV.jl, WORLD.jl, DSP.jl, and ImageFiltering.jl packages
or audio signal processing, and the ModalDecisionTrees.jl package [83]
or training temporal trees and forests.
esults at a glance. The following questions are interesting: Are

emporal decision trees and temporal random forest suitable methods
o solve this problem? Which combination of parameters gives the best
esults? Are our best results comparable with the results obtained by
tandard techniques, as presented in [8] (the original work on the CAM
ataset) and in more recent works on the same dataset (see Table 5)?
ow do our results compare with others in terms of tradeoff between

he complexity of the training/model and the performances? How can
ur results be interpreted? As far as the suitability of our method
s concerned, let us focus on Tables 3 and 4. As already mentioned,
ach row is the average of 10 executions of a specific combination of
ataset settings; each performance is associated with its experimental
tandard deviation, for a better assessment of the solidity of the results.
t is immediately clear that the datasets with segmented coughs and
reath cycles perform better than the original ones. This is probably
ue to two aspects: first, temporal decision trees and random forests
an focus on the relevant acoustic aspects of positive versus negative
amples with a single episode at the time; second, segmented datasets
re generally much bigger than non-segmented ones, which allowed
s to train better models. We have therefore followed two different
ules to highlight the results in Tables 3 and 4: for the non-segmented

atasets, rows with accuracies better than 85% have been highlighted,
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Table 3
Results obtained using original data (non-segmented).

𝑎𝑐𝑐 𝑝𝑟𝑒𝑐 𝑟𝑒𝑐 𝐹1 𝑚𝑡𝑟𝑎𝑖𝑛 𝑚𝑡𝑒𝑠𝑡

De
ci

sio
n

tr
ee

Co
ug

h

𝑇𝐴1 67.8 ± 8 68.9 ± 9 66.0 ± 9 67.2 ± 8 202 50
𝑇𝐴2 79.0 ± 14 81.4 ± 18 80.0 ± 13 79.6 ± 12 40 10
𝑇𝐴3 60.0 ± 21 65.0 ± 25 70.0 ± 26 63.7 ± 17 14 4
𝑇𝐴2+ 83.3 ± 6 82.1 ± 8 86.7 ± 11 83.7 ± 6 74 18
𝑇𝐴3+ 𝟗𝟎.𝟔 ± 𝟔 96.4 ± 6 84.5 ± 11 89.7 ± 7 72 18

Br
ea

th
𝑇𝐴1 68.8 ± 6 70.7 ± 7 65.2 ± 10 67.4 ± 7 202 50
𝑇𝐴2 82.0 ± 11 87.8 ± 14 76.0 ± 16 80.5 ± 12 36 10
𝑇𝐴3 55.0 ± 16 53.7 ± 26 60.0 ± 39 51.0 ± 29 12 4
𝑇𝐴2+ 82.8 ± 9 86.1 ± 16 83.3 ± 12 83.2 ± 8 74 18
𝑇𝐴3+ 𝟖𝟓.𝟎 ± 𝟗 93.5 ± 9 75.0 ± 16 82.6 ± 12 64 16

Co
ug

h+
br

ea
th 𝑇𝐴1 66.4 ± 7 67.4 ± 8 64.4 ± 6 65.8 ± 6 202 50

𝑇𝐴2 77.0 ± 15 81.5 ± 19 74.0 ± 16 76.4 ± 14 36 10
𝑇𝐴3 65.0 ± 13 70.0 ± 22 75.0 ± 26 67.3 ± 11 12 4
𝑇𝐴2+ 𝟖𝟓.𝟎 ± 𝟗 86.1 ± 10 84.5 ± 9 85.0 ± 9 74 18
𝑇𝐴3+ 84.4 ± 4 91.7 ± 7 76.3 ± 9 82.8 ± 5 64 16

Ra
nd

om
fo

re
st

Co
ug

h

𝑇𝐴1 76.6 ± 7 79.4 ± 9 72.4 ± 8 75.6 ± 8 202 50
𝑇𝐴2 83.4 ± 12 85.3 ± 14 83.6 ± 18 83.2 ± 13 40 10
𝑇𝐴3 70.5 ± 19 79.3 ± 23 70.0 ± 35 66.5 ± 28 14 4
𝑇𝐴2+ 𝟖𝟖.𝟕 ± 𝟔 91.9 ± 7 85.3 ± 10 88.1 ± 7 74 18
𝑇𝐴3+ 𝟖𝟗.𝟐 ± 𝟕 96.3 ± 6 81.6 ± 11 87.9 ± 8 72 18

Br
ea

th

𝑇𝐴1 74.5 ± 6 76.3 ± 9 72.3 ± 7 74.0 ± 6 202 50
𝑇𝐴2 84.0 ± 10 88.9 ± 12 80.0 ± 19 82.7 ± 11 36 10
𝑇𝐴3 62.0 ± 21 63.0 ± 32 63.0 ± 33 59.7 ± 27 12 4
𝑇𝐴2+ 𝟖𝟕.𝟗 ± 𝟔 91.9 ± 8 84.0 ± 11 87.2 ± 6 74 18
𝑇𝐴3+ 𝟗𝟒.𝟓 ± 𝟒 98.9 ± 4 90.3 ± 9 94.0 ± 5 64 16

Co
ug

h+
br

ea
th 𝑇𝐴1 74.8 ± 6 76.1 ± 8 73.0 ± 7 74.3 ± 6 202 50

𝑇𝐴2 84.2 ± 10 87.3 ± 10 81.2 ± 18 83.0 ± 11 36 10
𝑇𝐴3 69.5 ± 19 76.0 ± 26 69.0 ± 25 68.6 ± 18 12 4
𝑇𝐴2+ 𝟖𝟗.𝟖 ± 𝟓 93.5 ± 5 85.8 ± 11 89.1 ± 6 74 18
𝑇𝐴3+ 𝟖𝟗.𝟓 ± 𝟕 95.4 ± 6 83.3 ± 11 88.5 ± 8 64 16
Table 4
Results obtained using segmented data.

𝑎𝑐𝑐 𝑝𝑟𝑒𝑐 𝑟𝑒𝑐 𝐹1 𝑚𝑡𝑟𝑎𝑖𝑛 𝑚𝑡𝑒𝑠𝑡

De
ci

sio
n

tr
ee

Co
ug

h

𝑇𝐴1 72.8 ± 8 75.0 ± 8 68.4 ± 9 71.4 ± 8 340 86
𝑇𝐴2 91.0 ± 10 96.7 ± 11 86.0 ± 14 90.3 ± 10 42 10
𝑇𝐴3 72.5 ± 25 79.6 ± 26 70.0 ± 35 68.3 ± 32 12 4
𝑇𝐴2+ 93.2 ± 8 92.3 ± 8 94.6 ± 12 93.1 ± 9 92 22
𝑇𝐴3+ 90.0 ± 5 92.4 ± 7 87.5 ± 8 89.7 ± 6 64 16

Br
ea

th

𝑇𝐴1 74.3 ± 3 74.6 ± 4 74.1 ± 3 74.3 ± 2 982 246
𝑇𝐴2 84.0 ± 5 84.0 ± 6 84.7 ± 11 83.9 ± 6 120 30
𝑇𝐴3 61.7 ± 19 61.0 ± 30 66.7 ± 35 59.9 ± 27 20 6
𝑇𝐴2+ 88.2 ± 4 91.3 ± 4 84.6 ± 9 87.5 ± 5 326 82
𝑇𝐴3+ 91.9 ± 7 98.4 ± 3 85.4 ± 13 90.8 ± 9 104 26

Co
ug

h+
br

ea
th 𝑇𝐴1 𝟗𝟓.𝟗 ± 𝟏 96.5 ± 2 95.3 ± 2 95.9 ± 2 1338 334

𝑇𝐴2 𝟗𝟖.𝟖 ± 𝟐 100.0 ± 0 97.7 ± 4 98.8 ± 2 102 26
𝑇𝐴3 90.0 ± 17 92.6 ± 15 90.0 ± 32 86.0 ± 31 12 4
𝑇𝐴2+ 𝟗𝟕.𝟖 ± 𝟐 98.5 ± 1 97.0 ± 4 97.7 ± 2 430 108
𝑇𝐴3+ 84.4 ± 18 87.1 ± 21 86.3 ± 15 85.6 ± 16 64 16

Ra
nd

om
fo

re
st

Co
ug

h

𝑇𝐴1 80.4 ± 6 84.0 ± 6 75.2 ± 8 79.2 ± 6 340 86
𝑇𝐴2 92.4 ± 7 99.3 ± 2 85.6 ± 13 91.4 ± 8 42 10
𝑇𝐴3 73.5 ± 23 78.0 ± 25 77.0 ± 24 74.6 ± 20 12 4
𝑇𝐴2+ 𝟗𝟓.𝟓 ± 𝟒 98.5 ± 3 92.6 ± 9 95.1 ± 5 92 22
𝑇𝐴3+ 92.9 ± 7 100.0 ± 0 85.8 ± 15 91.5 ± 10 64 16

Br
ea

th

𝑇𝐴1 81.9 ± 2 84.0 ± 3 79.0 ± 3 81.4 ± 2 982 246
𝑇𝐴2 86.7 ± 7 91.5 ± 7 82.3 ± 16 85.4 ± 9 120 30
𝑇𝐴3 66.3 ± 12 68.1 ± 19 67.3 ± 31 63.7 ± 19 20 6
𝑇𝐴2+ 90.5 ± 3 95.7 ± 3 84.9 ± 6 89.9 ± 3 326 82
𝑇𝐴3+ 92.0 ± 8 99.9 ± 0 84.2 ± 16 90.5 ± 11 104 26

Co
ug

h+
br

ea
th 𝑇𝐴1 𝟗𝟖.𝟎 ± 𝟎 99.4 ± 1 96.7 ± 1 98.0 ± 0 1338 334

𝑇𝐴2 𝟗𝟕.𝟐 ± 𝟑 100.0 ± 0 94.5 ± 6 97.0 ± 3 102 26
𝑇𝐴3 86.5 ± 16 93.7 ± 9 81.0 ± 32 81.5 ± 28 12 4
𝑇𝐴2+ 𝟗𝟗.𝟒 ± 𝟏 99.0 ± 1 99.9 ± 0 99.4 ± 1 430 108
𝑇𝐴3+ 𝟗𝟔.𝟏 ± 𝟓 100.0 ± 0 92.3 ± 11 95.6 ± 6 64 16
while for the segmented ones, we have focused our attention on rows
having accuracy higher than 95%. A second, immediate observation
is that multi-frame learning performs decidedly better than standard,
9

single-audio learning; this means that positive samples are more easily b
recognized from negative ones from a combination of (a single) breath
and cough episode than they are from breath and cough separately; the
performances of the models on the tasks 𝑇𝐴1 and 𝑇𝐴2, in particular,

enefit from this approach. This is consistent with the results obtained
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Table 5
Performances of classification models on CAM: state of the art.

𝑎𝑐𝑐 𝑝𝑟𝑒𝑐 𝑟𝑒𝑐 𝐹1 𝐴𝑈𝐶 𝑎𝑐𝑐 𝑝𝑟𝑒𝑐 𝑟𝑒𝑐 𝐹1 𝐴𝑈𝐶

Brown et al. [8] [33]’s implementation of [27]
𝑇𝐴1 – 72 69 – 80 60 54 59 54 56
𝑇𝐴2 – 80 72 – 82 – – – – –
𝑇𝐴3 – 69 69 – 80 – – – – –
𝑇𝐴2+ – 70 90 – 87 72 82 85 90 66
𝑇𝐴3+ – 61 81 – 88 86 82 86 83 88

Coppock et al. [27] [33]’s implementation of [19]
𝑇𝐴1 – – – – 83 72 71 72 71 68
𝑇𝐴2 – – – – – – – – – –
𝑇𝐴3 – – – – – – – – – –
𝑇𝐴2+ – – – – 68 88 86 88 84 66
𝑇𝐴3+ – – – – 91 90 90 90 88 76

Dentamaro et al. [33] [33]’s implementation of [16]
𝑇𝐴1 80 80 80 80 83 71 71 71 68 78
𝑇𝐴2 – – – – – – – – – –
𝑇𝐴3 – – – – – – – – – –
𝑇𝐴2+ 93 89 93 90 93 85 82 85 90 88
𝑇𝐴3+ 93 89 93 90 93 85 78 85 81 87
(

𝑅

in [8]. As a third consideration, we notice, as expected, that tempo-
ral random forests perform consistently better than their single tree
counterpart; yet, very high accuracies are obtained with single trees
in some cases. In accordance with [8], augmented datasets give rise
to better models in virtually all cases. The worst results emerge from
𝑇𝐴3 (arguably, the most challenging among the three problems), partly
because of the intrinsic difficulty of the problem, but most importantly
because of the small size of datasets, which effects are worsened by
the downsampling step; 𝑇𝐴3+, its augmented counterpart, however,
llowed us to train much better models. The best result with non-
egmented datasets and single trees has been obtained precisely with
𝐴3+, with an average accuracy of 90.6%; in this case, temporal

andom forests do not improve the accuracy (best accuracy in this case:
9.2%). As for segmented datasets, the best result with single trees
s a very notable 98.8%, obtained in 𝑇𝐴2, with only 2% of standard
eviation over 10 executions; this result is already unmatched in the
urrent literature (see Table 5). With temporal random forests, 𝑇𝐴2+
llowed us to obtain an astonishing 99.4% of averaged accuracy, 1% of
tandard deviation, which is the best known performance of a COVID-
9 acoustic diagnostic system, across all existing datasets and learning
ethods (see Table 1); in the segmented, multi-frame setting, however,

emporal random forest models have accuracies better than 96% for
ll tasks, except for 𝑇𝐴3, which is an indication of the reliability of
his method. The multi-frame approach, as it can be seen, also has
he effect of lowering the standard deviation across the different sets
f experiments, at least in the segmented case. In order to evaluate
hich of the sample types (cough, breath, or cough+breath) is most

uited for this kind of prediction, and whether multi-frame learning
s statistically more effective than standard learning, the accuracy
esults for the different versions can be compared using the Friedman
est [91]. In addition to this, a Wilcoxon signed-rank test [92] can be

performed on each pair of versions to check if there are significative
differences between their results. The results of such tests, corrected
using the Holm–Bonferroni method [93], are shown in terms of critical
difference [94,95] diagrams in Fig. 3. It is worth noting that in the
segmented case, although the multi-frame approach does not always
show a critical difference with respect to the single-sample cases, it
shows a lower average rank in almost all tasks for the segmented
dataset (that is, in all tasks except for 𝑇𝐴3+ using the decision tree),
indicating a better performing model. A similar trend is highlighted
in Fig. 4, where the critical differences between decision trees and
random forests across the two segmented and non-segmented versions
are shown. All the experiments were executed on a computing server
with Intel® Xeon® Gold 6238R using 32 threads, and the average time
required to train the models for each task can be seen in Table 6.
10
Note that unrelated experiments were simultaneously run on the same
server, and the reported times may be affected by this.
Performances and interpretation of single trees. Besides our ability
to distinguish between positive and negative cases, it is important to
discuss the structure of the models themselves. The current trend is
to solve every learning problem using modern functional approaches
(as we have already noticed, in the case of acoustic-based diagnosis
models the functional approach is at the core of virtually all recent
contributions). More specifically, in the majority of cases acoustic
functional models are based on (deep) neural networks, and make
use of very complex acoustic features, often extracted with pre-trained
models; this combination of functional approach and complex acoustic
features produces statistically reliable, but essentially non-interpretable
models, which in most cases are also computationally very demanding.
Recall that we have extracted models from 30 variants of the original
CAM dataset, with each extraction consisting of 10 models, which
means that, in terms of single decision trees, we have a pool of 300
trained models. Among them, and in particular from those obtained
for 𝑇𝐴2+ in the segmented case (in which case we have reached, as
already observed, an accuracy of 99.4% on average), we have selected
a single tree with 100% test accuracy; it is shown in Fig. 5. As it can
be seen, such a tree is in fact a very simple model, in which most of
the examples fall in one of two leaves. These induce two rules, one
for positive cases (𝑝𝑜𝑠), with a support of 42%, and one negative ones
𝑛𝑒𝑔), with a support of 48%, as follows:

1 {𝑏}⟨𝐺⟩(min80(𝐴4) ≥ 1.15)∧
{𝑐}[𝐺]¬(min80(𝐴15) ≥ 1.35 × 106) ⇒ 𝑛𝑒𝑔

𝑅2 {𝑏}[𝐺]¬(min80(𝐴4) ≥ 1.15)∧
{𝑏}⟨𝐺⟩(min80(𝐴14) ≥ 6.81 × 106)∧
{𝑏}⟨𝐺⟩(min80(𝐴14) ≥ 6.81 × 106 ∧ ⟨𝐿⟩(max80(𝐴22) ≤ 7 × 105)) ⇒ 𝑝𝑜𝑠

The above rules are a perfect example of interpretable diagnosis model:
as it can be seen, they relate frequencies (in the cough and/or in the
breath sample) and powers, and allow one to formally define the essence
of being COVID-19 positive or negative. In particular, frequencies 𝐴4 ≈
43 Hz, 𝐴14 ≈ 299 Hz, 𝐴15 ≈ 363 Hz, and 𝐴22 ≈ 1405 Hz are the ones that
have been found particularly relevant for this classification task.

5. Conclusions

The ability of explaining the underlying theory that is extracted
with machine learning methods is of uttermost importance, especially
in medical applications. Interpretability and explainability in learning
are often synonymous of a symbolic approach, which, in turn, should be
based on logics that are able to grasp the complexity of the phenomena.
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Fig. 3. Critical difference diagrams comparing accuracies of the three sample types (cough, breath and cough+breath) for each task.
Fig. 4. Critical difference diagrams comparing accuracies of the segmented and non-segmented versions for each task.
odal symbolic learning offers classical learning tools enhanced with
odal propositional logics that allow one to capture complex patterns

rom data; temporal symbolic learning is the specialization of modal
ymbolic learning to the case of temporal data and temporal logics.
n this paper, we used temporal decision trees and temporal random
orests, which are based on Halpern and Shoham’s interval temporal
ogic HS, to build models for the diagnosis of COVID-19 based on the
coustic characteristics of cough/breath samples of positive and nega-
ive subjects, interpreted as a multivariate time series. We found that
ot only is our approach completely innovative, but its performances
re superior to those of classical methodologies, both symbolic and
unctional, applied to the same data, while allowing for the interpreta-
ion of the results and enabling visualization (and transformation into
udible sounds) of the models that encloses the distinguishing char-
cteristics of a cough/breath sample of a positive subject. In abstract
erms, such an ability could be useful to train medical personnel to
ecognize positive subjects, but also to develop automatic procedures
hat perform a screening, for example as a smartphone application.
s a future work, the next natural step would be how our approach
11
generalizes to other datasets, not only for the case of COVID-19, but
also for the case of other respiratory diseases.
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Table 6
Average computational time required to train each model. For each experiment, the number of training instances and their length (i.e., number of points) is also shown. Note
that, while the average time for decision tree models is computed over the 10 cross-validation repetitions, each random forest is computed 5 times with different random seeds,
thus the average time is computed over a total of 50 experiments.

Non-segmented Segmented

Train time (s) 𝑚𝑡𝑟𝑎𝑖𝑛 𝑁 Train time (s) 𝑚𝑡𝑟𝑎𝑖𝑛 𝑁

Decision tree Random forest Decision tree Random forest

Co
ug

h

𝑇𝐴1 15.89 1,654.57 202 50 4.22 136.81 340 3
𝑇𝐴2 1.05 53.34 40 37 0.18 2.06 42 3
𝑇𝐴3 0.09 6.28 14 37 0.01 0.15 12 3
𝑇𝐴2+ 2.89 247.03 74 37 0.40 5.94 92 3
𝑇𝐴3+ 1.07 96.57 72 37 0.22 2.94 64 3

Br
ea

th

𝑇𝐴1 110.30 5,184.86 202 50 122.47 8,271.27 982 44
𝑇𝐴2 4.28 238.98 36 50 3.54 124.35 120 26
𝑇𝐴3 0.10 80.99 12 50 0.23 5.03 20 26
𝑇𝐴2+ 10.91 1,079.55 74 50 13.50 947.30 326 26
𝑇𝐴3+ 15.51 598.27 64 50 2.78 101.68 104 26

Co
ug

h+
br

ea
th 𝑇𝐴1 56.07 5,355.72 202 50, 50 82.65 8,717.38 1338 3, 44

𝑇𝐴2 1.09 170.95 36 37, 50 1.10 28.56 102 3, 26
𝑇𝐴3 0.08 22.40 12 37, 50 0.01 0.67 12 3, 26
𝑇𝐴2+ 3.58 1,048.96 74 37, 50 14.08 905.60 430 3, 26
𝑇𝐴3+ 6.11 667.19 64 37, 50 0.14 21.10 64 3, 26
Fig. 5. A temporal decision tree with 100% test accuracy from task 𝑇𝐴2+ (segmented, cough+breath, 4th fold) using both cough and breath samples.
References

[1] Brunello A, Sciavicco G, Stan IE. Interval temporal logic decision tree learning.
In: Proc. of the 16th European conference on logics in artificial intelligence.
JELIA, Lecture notes in computer science, vol. 11468, Springer; 2019, p. 778–93.

[2] Sciavicco G, Stan IE. Knowledge extraction with interval temporal logic decision
trees. In: Proc. of the 27th international symposium on temporal representation
and reasoning. TIME, Leibniz international proceedings in informatics, vol. 178,
2020, p. 9:1–9:16.

[3] Breiman L. Random forests. Mach Learn 2001;45(1):5–32.
[4] Friedman JH, Popescu BE. Predictive learning via rule esambles. Ann Appl Stat

2008;2(3).
[5] Meinshausen N. Node harvest. Ann Appl Stat 2010;4(4).
12
[6] Deng H. Interpreting tree ensembles with inTrees. Int J Data Sci Anal
2019;7:277–89.

[7] Lucena-Sánchez E, Sciavicco G, Stan IE. Feature and language selection in
temporal symbolic regression for interpretable air quality modelling. Algorithms
2021;14(3):1–17.

[8] Brown C, Chauhan J, Grammenos A, Han J, Hasthanasombat A, Spathis D,
Xia T, Cicuta P, Mascolo C. Exploring automatic diagnosis of COVID-19 from
crowdsourced respiratory sound data. In: Proc. of the 26th ACM SIGKDD
international conference on knowledge discovery and data mining. KDD, 2020,
p. 3474–84. http://dx.doi.org/10.1145/3394486.3412865.

[9] Chaudhari G, Jiang X, Fakhry A, Han A, Xiao J, Shen S, Khanzada A. Virufy:
Global applicability of crowdsourced and clinical datasets for AI detection of
COVID-19 from cough. 2020, CoRR abs/2011.13320. arXiv:2011.13320.

http://refhub.elsevier.com/S0933-3657(22)00238-X/sb1
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb1
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb1
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb1
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb1
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb2
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb2
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb2
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb2
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb2
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb2
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb2
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb3
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb4
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb4
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb4
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb5
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb6
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb6
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb6
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb7
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb7
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb7
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb7
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb7
http://dx.doi.org/10.1145/3394486.3412865
http://arxiv.org/abs/2011.13320
http://arxiv.org/abs/2011.13320


Artificial Intelligence In Medicine 137 (2023) 102486F. Manzella et al.
[10] Orlandic L, Teijeiro T, Atienza D. The COUGHVID crowdsourcing dataset, a
corpus for the study of large-scale cough analysis algorithms. Sci Data 2021;8.

[11] Sharma N, Krishnan P, Kumar R, Ramoji S, Chetupalli SR, R. N, Ghosh PK,
Ganapathy S. Coswara – a database of breathing, cough, and voice sounds for
COVID-19 diagnosis. In: Proc. of the 21st annual conference of the international
speech communication association (INTERSPEECH). 2020, p. 4811–5.

[12] Cohen-McFarlane M, Goubran R, Knoefel F. Novel Coronavirus Cough Database:
NoCoCoDa. IEEE Access 2020;8:154087–94.

[13] Xia T, Spathis D, Brown C, Ch J, Grammenos A, Han J, Hasthanasombat A, Bon-
dareva E, Dang T, Floto A, Cicuta P, Mascolo C. COVID-19 sounds: A large-scale
audio dataset for digital COVID-19 detection. In: Proc. of the 35th conference
on neural information processing systems (NIPS) datasets and benchmarks track
(Round 2). 2021.

[14] Muguli A, Pinto L, R N, Sharma N, Krishnan P, Ghosh PK, Kumar R, Bhat S,
Chetupalli SR, Ganapathy S, Ramoji S, Nanda V. DiCOVA challenge: Dataset,
task, and Baseline system for COVID-19 diagnosis using acoustics. In: Proc. of the
22nd annual conference of the international speech communication association
(INTERSPEECH). 2021, p. 901–5.

[15] Schuller BW, Batliner A, Bergler C, Mascolo C, Han J, Lefter I, Kaya H,
Amiriparian S, Baird A, Stappen L, Ottl S, Gerczuk M, Tzirakis P, Brown C,
Chauhan J, Grammenos A, Hasthanasombat A, Spathis D, Xia T, Cicuta P,
Rothkrantz LJM, Zwerts JA, Treep J, Kaandorp CS. The INTERSPEECH 2021
computational paralinguistics challenge: COVID-19 cough, COVID-19 speech, es-
calation & primates. In: Proc. of the 22nd annual conference of the international
speech communication association (INTERSPEECH). 2021, p. 431–5.

[16] Imran A, Posokhova I, Qureshi HN, Masood U, Riaz MS, Ali K, John CN, Hus-
sain I, Nabeel M. AI4COVID-19: AI enabled preliminary diagnosis for COVID-19
from cough samples via an app. Inform Med Unlocked 2020;20:1–14.

[17] Hassan A, Shahin I, Alsabek MB. COVID-19 detection system using recurrent neu-
ral networks. In: Proc. of the 2020 international conference on communications,
computing, cybersecurity, and informatics. CCCI, 2020, p. 1–5.

[18] Laguarta J, Hueto F, Subirana B. COVID-19 artificial intelligence diagnosis using
only cough recordings. IEEE Open J Eng Med Biol 2020;1:275–81.

[19] Bansal V, Pahwa G, Kannan N. Cough classification for COVID-19 based on audio
MFCC features using convolutional neural networks. In: Proc. of the 2020 IEEE
international conference on computing, power and communication technologies.
GUCON, 2020, p. 604–8.

[20] Melek M. Diagnosis of COVID-19 and non-COVID-19 patients by classifying only
a single cough sound. Neural Comput Appl 2021;33(24):17621–32.

[21] Xia T, Han J, Qendro L, Dang T, Mascolo C. Uncertainty-aware COVID-19
detection from imbalanced sound data. In: Proc. of the 22nd annual conference
of the international speech communication association (INTERSPEECH). 2021, p.
2951–5.

[22] Pahar M, Klopper M, Warren R, Niesler T. COVID-19 cough classification
using machine learning and global smartphone recordings. Comput Biol Med
2021;135:104572.

[23] Despotovic V, Ismael M, Cornil M, Call RM, Fagherazzi G. Detection of COVID-
19 from voice, cough and breathing patterns: Dataset and preliminary results.
Comput Biol Med 2021;(138):104944.

[24] Dash TK, Mishra S, Panda G, Satapathy SC. Detection of COVID-19 from
speech signal using bio-inspired based cepstral features. Pattern Recognit
2021;117:107999.

[25] Stasak B, Huang Z, Razavi S, Joachim D, Epps J. Automatic detection of COVID-
19 based on short-duration acoustic smartphone speech analysis. J Healthc
Inform Res 2021;5(2):201–17.

[26] Han J, Brown C, Chauhan J, Grammenos A, Hasthanasombat A, Spathis D, Xia T,
Cicuta P, Mascolo C. Exploring automatic COVID-19 diagnosis via voice and
symptoms from crowdsourced data. In: Proc of. the IEEE international conference
on acoustics, speech and signal processing. ICASSP, 2021, p. 8328–32.

[27] Coppock H, Gaskell A, Tzirakis P, Baird A, Jones L, Schuller B. End-to-end
convolutional neural network enables COVID-19 detection from breath and cough
audio: a pilot study. BMJ Innov 2021;7(2).

[28] Fakhry A, Jiang X, Xiao J, Chaudhari G, Han A. A multi-branch deep learning
network for automated detection of COVID-19. In: Proc. of the 22nd annual con-
ference of the international speech communication association (INTERSPEECH).
2021, p. 4139–43.

[29] Das RK, Madhavi MC, Li H. Diagnosis of COVID-19 using auditory acoustic
cues. In: Proc. of the 22nd annual conference of the international speech
communication association (INTERSPEECH). 2021, p. 921–5.

[30] Casanova E, Candido Jr A, Corso Fernandes Junior R, Finger M, Stefanel
Gris LR, Antonelli Ponti M, Peixoto Pinto da Silva D. Transfer learning and
data augmentation techniques to the COVID-19 identification tasks in ComParE
2021. In: Proc. of the 22nd annual conference of the international speech
communication association (INTERSPEECH). 2021, p. 446–50.

[31] Deshpande G, Schuller BW. The DiCOVA 2021 challenge – an encoder-decoder
approach for COVID-19 recognition from coughing audio. In: Proc. of the
22nd annual conference of the international speech communication association
(INTERSPEECH). 2021, p. 931–5.

[32] Alkhodari MA, Khandoker AH. Detection of COVID-19 in smartphone-
based breathing recordings: a pre-screening deep learning tool. PLOS ONE
2022;17(1):1–25.
13
[33] Dentamaro V, Giglio P, Impedovo D, Moretti L, Pirlo G. AUCO ResNet: an
end-to-end network for COVID-19 pre-screening from cough and breath. Pattern
Recognit 2022;127:108656.

[34] Tena A, Clarià F, Solsona F. Automated detection of COVID-19 cough. Biomed
Signal Process Control 2022;71(Part):103175.

[35] Chang Y, Jing X, Ren Z, Schuller BW. CovNet: A transfer learning framework
for automatic COVID-19 detection from crowd-sourced cough sounds. Front Digit
Health 2021;3:799067.

[36] Nassif AB, Shahin I, Bader M, Hassan A, Werghi N. COVID-19 detection systems
using deep-learning algorithms based on speech and image data. Mathematics
2022;10(4):564.

[37] Aly M, Rahouma KH, Ramzy SM. Pay attention to the speech: COVID-19
diagnosis using machine learning and crowdsourced respiratory and speech
recordings. Alex Eng J 2022;61(5):3487–500.

[38] Han J, Xia T, Spathis D, Bondareva E, Brown C, Chauhan J, Dang T,
Grammenos A, Hasthanasombat A, Floto A, et al. Sounds of COVID-19: ex-
ploring realistic performance of audio-based digital testing. NPJ Digit Med
2022;5(1):1–9.

[39] Sills J, Barton CM, Alberti M, Ames D, Atkinson J-A, Bales J, Burke E, Chen M,
Diallo SY, Earn DJD, Fath B, Feng Z, Gibbons C, Hammond R, Heffernan J,
Houser H, Hovmand PS, Kopainsky B, Mabry PL, Mair C, Meier P, Niles R,
Nosek B, Osgood N, Pierce S, Polhill JG, Prosser L, Robinson E, Rosenzweig C,
Sankaran S, Stange K, Tucker G. Call for transparency of COVID-19 models.
Science 2020;368(6490):482–3.

[40] Bagnall AJ, Lines J, Hills J, Bostrom A. Time-series classification with COTE:
The Collective of Transformation-based Ensembles. In: Proc. of the 32nd IEEE
international conference on data engineering (ICDE). 2016, p. 1548–9.

[41] Pasos Ruiz A, Flynn M, Large J, Middlehurst M, Bagnall AJ. The great multi-
variate time series classification bake off: a review and experimental evaluation
of recent algorithmic advances. Data Min Knowl Discov 2021;35(2):401–49.

[42] Kakizawa Y, Shumway R, Taniguchi M. Discrimination and clustering for
multivariate time series. J Amer Statist Assoc 1998;93(441):328–40.

[43] Kudo M, Toyama J, Shimbo M. Multidimensional curve classification using
passing-through regions. Pattern Recognit Lett 1999;20(11):1103–11.

[44] Caiado J, Crato N, Peña D. A periodogram-based metric for time series
classification. Comput Statist Data Anal 2006;50(10):2668–84.

[45] Fulcher BD, Jones NS. Highly comparative feature-based time-series classifica-
tion. IEEE Trans Knowl Data Eng 2014;26(12):3026–37.

[46] Moskovitch R, Shahar Y. Classification-driven temporal discretization of
multivariate time series. Data Min Knowl Discov 2015;29(4):871–913.

[47] Lines J, Bagnall A. Time series classification with ensembles of elastic distance
measures. Data Min Knowl Discov 2015;29(3):565–92.

[48] Tan P, Steinbach MS, Kumar V. Introduction to data mining. Addison-Wesley;
2005.

[49] Han J, Kamber M, Pei J. Data mining: concepts and techniques. 3rd ed.. Morgan
Kaufmann; 2011.

[50] Malhotra P, T.V. V, Vig L, Agarwal P, Shroff GM. TimeNet: Pre-trained deep
recurrent neural network for time series classification. In: Proc. of the 25th
european symposium on artificial neural networks. ESANN, 2017, p. 607–12.

[51] Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural
networks. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ,
editors. Advances in neural information processing systems 27: annual conference
on neural information processing systems 2014, December 8-13 2014, Montreal,
Quebec, Canada. 2014, p. 3104–12.

[52] Wang Z, Yan W, Oates T. Time series classification from scratch with deep neural
networks: A strong baseline. In: Proc. of the 2017 international joint conference
on neural networks. IJCNN, 2017, p. 1578–85.

[53] Fawaz H, Forestier G, Weber J, Idoumghar L, Muller P. Deep learning for time
series classification: a review. Data Min Knowl Discov 2019;33(4):917–63.

[54] Längkvist M, Karlsson L, Loutfi A. A review of unsupervised feature learning and
deep learning for time-series modeling. Pattern Recognit Lett 2014;42:11–24.

[55] Diez JR, González CA, Boström H. Boosting interval based literals. Intell Data
Anal 2001;5(3):245–62.

[56] Schapire RE. A brief introduction to boosting. In: Proc. of the 16th international
joint conference on artificial intelligence. IJCAI, 1999, p. 1401–6.

[57] Geurts P. Pattern extraction for time series classification. In: Principles of data
mining and knowledge discovery. Springer; 2001, p. 115–27.

[58] Yamada Y, Suzuki E, Yokoi H, Takabayashi K. Decision-tree induction from
time-series data based on a standard-example split test. In: Proc. of the 12th
international conference on machine learning. ICML, 2003, p. 840–7.

[59] Shokoohi-Yekta M, Wang J, Keogh E. On the non-trivial generalization of
dynamic time warping to the multi-dimensional case. In: Proc. of the 15th SIAM
international conference on data mining. SDM, 2015, p. 289–97.

[60] Balakrishnan S, Madigan D. Decision Trees for Functional Variables. In: Proc. of
the 6th international conference on data mining (ICDM. 2006, p. 798–802.

[61] Bartocci E, Bortolussi L, Sanguinetti G. Data-driven statistical learning of tem-
poral logic properties. In: Proc. of the 12th international conference on formal
modeling and analysis of timed systems. FORMATS, Lecture notes in computer
science, vol. 8711, Springer; 2014, p. 23–37.

[62] Baydogan MG, Runger GC. Learning a symbolic representation for multivariate
time series classification. Data Min Knowl Discov 2015;29(2):400–22.

http://refhub.elsevier.com/S0933-3657(22)00238-X/sb10
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb10
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb10
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb11
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb11
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb11
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb11
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb11
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb11
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb11
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb12
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb12
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb12
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb13
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb13
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb13
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb13
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb13
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb13
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb13
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb13
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb13
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb14
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb14
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb14
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb14
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb14
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb14
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb14
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb14
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb14
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb15
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb15
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb15
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb15
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb15
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb15
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb15
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb15
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb15
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb15
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb15
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb15
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb15
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb16
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb16
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb16
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb16
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb16
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb17
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb17
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb17
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb17
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb17
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb18
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb18
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb18
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb19
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb19
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb19
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb19
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb19
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb19
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb19
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb20
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb20
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb20
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb21
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb21
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb21
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb21
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb21
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb21
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb21
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb22
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb22
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb22
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb22
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb22
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb23
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb23
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb23
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb23
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb23
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb24
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb24
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb24
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb24
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb24
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb25
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb25
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb25
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb25
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb25
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb26
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb26
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb26
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb26
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb26
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb26
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb26
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb27
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb27
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb27
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb27
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb27
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb28
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb28
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb28
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb28
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb28
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb28
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb28
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb29
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb29
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb29
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb29
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb29
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb30
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb30
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb30
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb30
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb30
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb30
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb30
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb30
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb30
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb31
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb31
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb31
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb31
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb31
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb31
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb31
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb32
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb32
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb32
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb32
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb32
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb33
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb33
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb33
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb33
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb33
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb34
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb34
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb34
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb35
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb35
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb35
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb35
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb35
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb36
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb36
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb36
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb36
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb36
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb37
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb37
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb37
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb37
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb37
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb38
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb38
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb38
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb38
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb38
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb38
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb38
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb39
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb39
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb39
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb39
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb39
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb39
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb39
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb39
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb39
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb39
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb39
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb40
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb40
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb40
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb40
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb40
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb41
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb41
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb41
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb41
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb41
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb42
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb42
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb42
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb43
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb43
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb43
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb44
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb44
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb44
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb45
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb45
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb45
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb46
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb46
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb46
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb47
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb47
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb47
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb48
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb48
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb48
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb49
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb49
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb49
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb50
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb50
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb50
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb50
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb50
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb51
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb51
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb51
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb51
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb51
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb51
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb51
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb51
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb51
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb52
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb52
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb52
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb52
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb52
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb53
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb53
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb53
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb54
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb54
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb54
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb55
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb55
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb55
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb56
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb56
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb56
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb57
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb57
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb57
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb58
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb58
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb58
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb58
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb58
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb59
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb59
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb59
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb59
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb59
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb60
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb60
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb60
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb61
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb61
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb61
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb61
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb61
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb61
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb61
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb62
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb62
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb62


Artificial Intelligence In Medicine 137 (2023) 102486F. Manzella et al.
[63] Bombara G, Vasile C, Penedo F, Yasuoka H, Belta C. A decision tree approach to
data classification using signal temporal logic. In: Proc. of the 19th international
conference on hybrid systems: computation and control. HSCC, 2016, p. 1–10.

[64] Ye L, Keogh EJ. Time series shapelets: a novel technique that allows
accurate, interpretable and fast classification. Data Min Knowl Discov
2011;22(1–2):149–82.

[65] Brunello A, Marzano E, Montanari A, Sciavicco G. J48SS: A novel decision
tree approach for the handling of sequential and time series data. Computers
2019;8(1):21.

[66] Goranko V, Montanari A, Sciavicco G. A road map of interval temporal logics
and duration calculi. J Appl Non-Class Logics 2004;14(1–2):9–54.

[67] Halpern J, Shoham Y. A propositional modal logic of time intervals. J ACM
1991;38(4):935–62.

[68] Allen JF. Maintaining knowledge about temporal intervals. Commun ACM
1983;26(11):832–43.

[69] Bozzelli L, Molinari A, Montanari A, Peron A, Sala P. Model checking for
fragments of the interval temporal logic HS at the low levels of the polynomial
time hierarchy. Inform Comput 2018;262(Part):241–64. http://dx.doi.org/10.
1016/j.ic.2018.09.006.

[70] Bozzelli L, Molinari A, Montanari A, Peron A. Model checking interval temporal
logics with regular expressions. Inform Comput 2020;272:104498. http://dx.doi.
org/10.1016/j.ic.2019.104498.

[71] Lubba C, Sethi S, Knaute P, Schultz S, Fulcher B, Jones N. Catch22: Canonical
time-series characteristics - selected through highly comparative time-series
analysis. Data Min Knowl Discov 2019;33(6):1821–52.

[72] Belson WA. A technique for studying the effects of television broadcast. J R Stat
Soc 1956;5(3):195–202.

[73] Morgan JN, Sonquist JA. Problems in the analysis of survey data, and a proposal.
J Amer Statist Assoc 1963;58(302):415–34.

[74] Messenger R, Mandell L. A modal search technique for predictive nominal scale
multivariate analysis. J Amer Statist Assoc 1972;67(340):768–72.

[75] Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression
trees. Wadsworth Publishing Company; 1984.

[76] Quinlan JR. Induction of decision trees. Mach Learn 1986;1:81–106.
[77] Quinlan JR. C4.5: Programs for machine learning. Morgan Kaufmann; 1993.
[78] Hyafil L, Rivest RL. Constructing optimal binary decision trees is NP-Complete.

Inform Process Lett 1976;5(1):15–7.
14
[79] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D,
Brucher M, Perrot M, Duchesnay E. Scikit-learn: Machine learning in Python. J
Mach Learn Res 2011;12:2825–30.

[80] Witten IH, Frank E, Hall MA. Data mining: practical machine learning tools and
techniques. 4th ed.. Morgan Kaufmann; 2017.

[81] Sadeghi B. DecisionTree.jl. 2013, https://github.com/JuliaAI/DecisionTree.jl.
[82] Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A fresh approach to

numerical computing. SIAM Rev 2017;59(1):65–98.
[83] Pagliarini G, Manzella F, Sciavicco G, Stan IE. ModalDecisionTrees.jl: Inter-

pretable models for native time-series & image classification. 2021, http://dx.
doi.org/10.5281/zenodo.7040419.

[84] Ho TK. Random decision forests. In: Proc. of the 3rd international conference
on document analysis and recognition. ICDAR, 1995, p. 278–82.

[85] Liaw A, Wiener M. Classification and regression by RandomForest. R News
2002;2(3):18–22.

[86] Tüysüzoğlu G, Birant D, Kıranoğlu V. Temporal bagging: a new method for
time-based ensemble learning. Turk J Electr Eng Comput Sci 2022;30:279–94.

[87] Pagliarini G, Sciavicco G, Stan IE. Multi-frame modal symbolic learning. In: Proc.
of the 3rd workshop on artificial intelligence and formal verification, logic,
automata, and synthesis (OVERLAY). CEUR workshop proceedings, vol. 2987,
CEUR-WS.org; 2021, p. 37–41.

[88] Davis SB, Mermelstein P. Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences. IEEE Trans Acoust
Speech Signal Process 1980;28(4):357–66.

[89] Korpáš J, Sadloňová J, Vrabec M. Analysis of the cough sound: an overview.
Pulmon Pharmacol 1996;9(5–6):261–8.

[90] Singh VP, Rohith J, Mittal VK. Preliminary analysis of cough sounds. In: Proc.
of the annual IEEE india conference. INDICON, 2015, p. 1–6.

[91] Friedman M. A comparison of alternative tests of significance for the problem
of m rankings. Ann Math Stat 1940;11(1):86–92.

[92] Wilcoxon F. Individual comparisons by ranking methods. In: Breakthroughs in
statistics. Springer; 1992, p. 196–202.

[93] Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat
1979;65–70.

[94] Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach
Learn Res 2006;7(1):1–30.

[95] Benavoli A, Corani G, Mangili F. Should we really use post-hoc tests based on
mean-ranks? J Mach Learn Res 2016;17(1):152–61.

http://refhub.elsevier.com/S0933-3657(22)00238-X/sb63
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb63
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb63
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb63
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb63
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb64
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb64
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb64
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb64
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb64
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb65
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb65
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb65
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb65
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb65
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb66
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb66
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb66
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb67
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb67
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb67
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb68
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb68
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb68
http://dx.doi.org/10.1016/j.ic.2018.09.006
http://dx.doi.org/10.1016/j.ic.2018.09.006
http://dx.doi.org/10.1016/j.ic.2018.09.006
http://dx.doi.org/10.1016/j.ic.2019.104498
http://dx.doi.org/10.1016/j.ic.2019.104498
http://dx.doi.org/10.1016/j.ic.2019.104498
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb71
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb71
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb71
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb71
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb71
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb72
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb72
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb72
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb73
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb73
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb73
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb74
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb74
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb74
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb75
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb75
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb75
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb76
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb77
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb78
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb78
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb78
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb79
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb79
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb79
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb79
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb79
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb79
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb79
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb80
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb80
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb80
https://github.com/JuliaAI/DecisionTree.jl
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb82
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb82
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb82
http://dx.doi.org/10.5281/zenodo.7040419
http://dx.doi.org/10.5281/zenodo.7040419
http://dx.doi.org/10.5281/zenodo.7040419
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb84
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb84
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb84
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb85
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb85
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb85
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb86
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb86
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb86
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb87
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb87
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb87
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb87
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb87
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb87
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb87
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb88
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb88
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb88
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb88
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb88
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb89
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb89
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb89
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb90
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb90
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb90
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb91
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb91
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb91
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb92
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb92
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb92
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb93
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb93
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb93
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb94
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb94
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb94
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb95
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb95
http://refhub.elsevier.com/S0933-3657(22)00238-X/sb95

	The voice of COVID-19: Breath and cough recording classification with temporal decision trees and random forests
	Introduction
	Learning from Time Series
	Interval Temporal Decision Trees and Forests
	Data and Experiments
	Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References


