
Information and Computation 301 (2024) 105209
Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

Neural-symbolic temporal decision trees for multivariate time

series classification

Giovanni Pagliarini a,b, Simone Scaboro c, Giuseppe Serra c, Guido Sciavicco a,
Ionel Eduard Stan d,∗
a Department of Mathematics and Computer Science, University of Ferrara, Italy
b Department of Mathematical, Physical, and Computer Sciences, University of Parma, Italy
c Department of Mathematics, Computer Science and Physics, University of Udine, Italy
d Faculty of Engineering, Free University of Bozen-Bolzano, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 January 2024
Received in revised form 24 July 2024
Accepted 28 July 2024
Available online 2 August 2024

Keywords:
Time in artificial intelligence
Temporal logic and reasoning
Machine learning
Hybrid temporal decision trees

Multivariate time series classification is an ubiquitous and widely studied problem. Due
to their strong generalization capability, neural networks are suitable for this problem,
but their intrinsic black-box nature often limits their applicability. Temporal decision trees
are a relevant alternative to neural networks for the same task regarding classification
performances while attaining higher levels of transparency and interpretability. In this
work, we approach the problem of hybridizing these two techniques, and present three
independent, natural hybridization solutions to study if, and in what measure, both the
ability of neural networks to capture complex temporal patterns and the transparency
and flexibility of temporal decision trees can be leveraged. To this end, we provide initial
experimental results for several tasks in a binary classification setting, showing that our
proposed neural-symbolic hybridization schemata may be a step towards accurate and
interpretable models.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

1.1. Overview

A multivariate time series is a collection of time-stamped tuples, each composed by the value of several attributes. The
classification of (multivariate) time series is an active area of research across many scientific disciplines, such as air quality
control and prediction in climate science, prices and rates of inflation analysis in economics, infectious diseases trends and
spreading patterns modeling in medicine, pronunciation of word signs interpretation in linguistics, sensor-based predictive
maintenance in engineering, among many others [1].

As it is valid for any other classification problem, symbolic and sub-symbolic techniques, two fundamental pillars of
artificial intelligence, can address multivariate time series classification. Symbolic learning explicitly represents input data as
a logical knowledge base using discrete symbols and performs rule-based logical reasoning. On the other hand, sub-symbolic
learning learns patterns directly from continuous data and reasons implicitly using such patterns. Neural network-based
models, a representative class of the sub-symbolic paradigm, excel at learning from unstructured (or non-tabular) data,

* Corresponding author.
E-mail address: ioneleduard.stan@unibz.it (I.E. Stan).
https://doi.org/10.1016/j.ic.2024.105209
0890-5401/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.ic.2024.105209
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2024.105209&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ioneleduard.stan@unibz.it
https://doi.org/10.1016/j.ic.2024.105209
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
Decision tree

leaf split root

leaf split leaf root split root

leaf split root

Fig. 1. Different types of temporal decision tree hybridization, partially ordered by the residual level of interpretability. This work focuses on three hybrids:
leaf level, split level, and leaf level.

such as time series, images, audio, text, and graphs, among many others. The success of such models boils down to the
exploitation of inductive biases in the data, such as spatial correlations in convolutional neural networks. However, neural
network models could sometimes be more effective on structured (or tabular) data. Conversely, decision tree-based models,
symbolic methods by nature, and their variants (e.g., random forests and gradient-boosted trees) are (still) dominant in the
latter case [2,3].

Since the early days of artificial intelligence, experts have perpetuated a long-standing debate on which approach to
prefer. Its roots lie in the fact that sub-symbolic learning methods tend to be more accurate than symbolic ones, which can
better generalize the task at hand, despite requiring large amounts of data; in contrast, symbolic approaches can extract
interpretable and explainable models (even from relatively small datasets), which are integrable with human expert knowl-
edge. Interpretability is as crucial as accuracy, where the decisions made by artificial intelligence models directly impact
human lives [4]. Indeed, the recent GDPR (General Data Protection Regulation) of the European Union highlights the need
for interpretable/explainable automatic decision processes. As suggested in [5–7] (among others), one could explore hybrid
approaches to understand if the strengths of both learning paradigms can be harnessed towards obtaining models with high
levels of interpretability and good statistical performances.

A recent class of symbolic approaches for (multivariate) time series classification is temporal decision trees (TDTs), initially
proposed in [8]. Conventional decision trees (DTs) suffer in natively learning from input time series as they cannot deal with
the temporal dimension. However, by trading some of the informative content of the original time series, DTs can learn from
a feature representation of the time series, that is, compressing the time-dependent information into a more familiar tabular
form (e.g., applying/finding the maximum value over each variable of time series before the learning phase). Instead, TDTs
extend DTs in two directions. First, TDTs consider time series in their original format, assuming to make decisions on
time series intervals. Second, TDTs perform reasoning in temporal terms by substituting DTs’ propositional logic with more
expressive yet still propositional interval temporal logic. TDTs harness traditional DT learning algorithms (e.g., CART [9]) with
minor changes due to the resulting models’ extended expressivity in logic terms. Application-wise, TDTs show promising
results for time series classification in a variety of fields (e.g., see [8,10–13]). On the sub-symbolic side, recurrent neural
networks (RNNs) are well-known models to learn from temporal data, including time series. RNNs can maintain information
about the past to predict future inputs. Modern neural networks use gradient descent-based optimization algorithms during
training. RNNs are no exception, but they suffer from the vanishing gradient problem: gradients become smaller and smaller
as they propagate through the network, eventually disappearing. Gated recurrent units (GRUs) [14], specific types of RNNs,
are a popular choice to address such an issue: a gating mechanism allows the network to selectively update its hidden state
based on the current input and the previous hidden state. GRUs are suitable non-symbolic models to hybridize TDTs.

By drawing inspiration from the literature [15–17], we identify three different ways to inject neural computations into
decision trees:

1. using a neural network at the leaf node of a decision tree to perform the final classification (leaf hybridization);
2. using a neural network as a feature extractor at the internal nodes of a decision tree to take neural split decisions (split

hybridization); and
3. replacing the root node of a decision tree with a neural network that weighs the decisions taken by the (possibly more

than two) child nodes of the root (root hybridization).
2

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
Note that these three hybridization techniques reflect different ways of blending neural processing with logical reasoning,
deployable, at least in principle, between any neural network and decision tree model. Fig. 1 depicts how to combine
the hybridization methods to convey neural-symbolic decision trees. It is essential to stress that such techniques belong
to a more general schema for obtaining neural-symbolic models. However, we limit the scope of this article to single
decision trees and neural networks. Thus, considering the different node types in decision trees, our proposed hybridization
techniques are natural.

1.2. Motivation

Similarly to other machine learning tasks, multivariate classification of time series may require both sub-symbolic and
symbolic reasoning. One illustrative example is the classification of audio recordings of coughing and breathing episodes
aimed at diagnosing respiratory infections; typically, this problem is approached by classifying entire recordings using
sub-symbolic or, less commonly, symbolic methods after suitable preprocessing. However, certain sounds might be bet-
ter identified when examined individually rather than within the entire episode. For instance, specific respiratory sounds
such as rhonchi (low-pitched breath sounds like snoring), crackles (high-pitched sounds similar to popping), wheezing
(high-pitched whistling sounds from narrowed bronchial tubes), and stridor (harsh, vibratory sounds from narrowed up-
per airways) can be more accurately detected in isolation. In these cases, the adaptability and flexibility of a sub-symbolic
learning model, like a neural network, are advantageous. On the other hand, understanding how these sounds occur with
each other or within the entire breathing episode (which may be several seconds long) might be better suited to a symbolic
model, such as TDTs. TDTs effectively capture the temporal logical relationships, such as the pattern of repeated string sounds
overlapped by rhonchi that might indicate a specific infection.

A natural way to combine these learning techniques is to use a pre-trained sub-symbolic model to identify specific
sounds and treat these identifications as features of an interval alongside other mathematical features like the average
power at a particular frequency. A symbolic learning model can then utilize these features to identify logical rules, aligning
with the split hybridization method described earlier. When a pre-trained model is unavailable, it can be trained ‘on-the-
fly.’ In other situations, a different order of combining symbolic and sub-symbolic learning might be more effective. For
example, subtle differences in how the same respiratory disease is present in different subjects might be easier to capture
as a mathematical function rather than a logical rule. An initial sub-symbolic clustering step can facilitate subsequent rule
extraction, representing root hybridization. Conversely, after identifying general rules to cluster subjects broadly, a final
classification step based on a non-linear mathematical characterization can be handled by a neural network corresponding
to leaf hybridization.

Combining two or all three hybridization techniques represents a logical next step. This paper examines the three basic
combinations: split, root, and leaf hybridization. We provide learning algorithms for each technique and comprehensively
compare them.

1.3. Experiments breakdown

In order to assess the viability of our solutions, we perform two batches of experiments, all concerning the task of
diagnosing respiratory diseases. In the first batch, we consider the problem of diagnosing COVID-19 from audio samples
of coughs and breaths. These tasks have been posed as binary, multivariate time series classification problems [18,19], for
which both temporal decision trees [11] and neural networks [20–24] have proven their efficacy. The purpose of this exper-
iment is purely that of assessing the qualities of each hybridization technique in the particular case of temporal decision
trees, and not that of achieving the highest absolute performances, which is often the results of a very intensive hyper-
parametrization, complex feature extraction, and model stacking/bagging. More in particular, we shall focus on our ability
of extracting logical rules for each of the classes, with and without neural component, in order to highlight the role and
the effectiveness of the latter. In the second set of experiments we shall consider a different, but similar problem, that is,
a multi-class respiratory disease dataset: the Respiratory Sound Database [25]. We take advantage from the previous exper-
iment to establish the most effective hybridization technique and parametrization, and we focus specifically on extracting
interpretable rules for each class.

1.4. Structure

The article is organized as follows: in Section 2 we review the most important contributions to combining the two
techniques of learning decision trees and neural networks; in Section 3 we present basic notions on multivariate time
series classification, temporal decision trees and neural network-based approaches to the problem; in Section 4 we present
and formalize the three different hybridization methods discussed above; then, in Section 5 we perform the experimental
comparison between the proposed methods, and we show several results in terms of extracted rules, before concluding.

2. Related work

Decision trees and neural networks are well-known alternatives for pattern recognition, and their strengths and weak-
nesses have been studied for over three decades [26,27]. Notoriously, decision trees favor the interpretability of their
3

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
decisions thanks to their hierarchical structure, which enables one to visualize and understand the relationship between
input features and outputs. However, decision trees need help with continuous numerical variables as they work best
when clear thresholds or boundaries exist between the outcomes, which is only sometimes the case in numerical domains.
Conversely, neural networks challenge human understanding due to their complexity (e.g., many layers) and lack of inter-
pretability (e.g., no explicit rules), frequently referred to as black-box models whose inner workings are hard to comprehend
yet have a better generalization capability. In this section, we focus on recent literature that explores the integration of
these two distinct models.

2.1. From decision trees to neural networks

In [28–30], the authors observe that learned decision trees can establish the topology of neural networks: exploit the
structure of the decision trees to build simple neural networks with just two hidden layers (without considering the input
and output layers) by mapping decision nodes or rules to neural units. As a result, such networks may exhibit redundant
units and connections. To this end, the authors in [31] (which extends the work in [30]), propose a pruning-based com-
pression technique. Decision trees can also initialize radial-basis function neural networks, where the decision boundaries
(i.e., regions in the instance space) of the decision tree models determine neurons in the resulting networks, with each
neuron being a basis function [32]. In this article, our hybridization techniques also exploit the structure of the decision
trees, focusing on distinct types of tree nodes but not extracting neural networks as final models. We use, instead, neural
networks to enhance the generalization ability of temporal decision trees to convey neural-symbolic ones.

2.2. From neural networks to decision trees

In [33], the authors note a limitation in decision tree induction algorithms: recursive splits are performed over fewer
instances as the trees grow. To address such an issue, they propose querying trained neural networks acting as oracles for
generating new samples to split on. In their article, they use m-of-n Boolean splits [34] (i.e., m out of n conditions must be
satisfied), and such new instances enable more statistically significant tests, having more evidence. A similar work performs
univariate splits [35]. Inspired by such a line of research, in [36], the authors propose training decision trees from inputs
generated from oracles rather than directly from data. In [37], the researchers present a methodology that incorporates both
discrete and continuous inputs and outputs, addressing some limitations of the above methods by incorporating a novel
attribute significance analysis to perform splits. Instead, in [38], the authors extract decision trees from input data jointly
with new randomly generated samples from ensembles of neural networks. In this paper, we also harness the possibility
of querying oracles at different degrees of hybridization; as we shall see, for example, split-level hybridizations can query
oracles to perform splits.

2.3. Hybrid neural-symbolic models

In [15], the researchers enhance the generalization ability of standard decision trees by training a small perceptron, a
particular neural network, having one hidden layer with a single output at each decision node of the trees. During the
induction phase, their method learns a nonlinear multivariate feature f (·) on the (subset of) training instances of a specific
decision node, splitting such samples if f (·) < 0 (since the output has tanh as the activation function). Such a method
shows increased accuracy compared to the original tree learning algorithm and has reduced training time compared to a
more significant multi-layer neural network that uses backpropagating to train. Similar works generate oblique decision
trees (e.g., see [39]), while others use convolutional neural networks in decision nodes (e.g., see [40]). The idea of neural
feature extraction falls under the split-level hybridization category, as we shall formally define in this article, limiting its
scope to univariate splits. In [16], the authors propose a distinguishable methodology for inducing hybrid (neural-symbolic)
decision trees. Initially, decision nodes perform splits only over categorical attributes, if any, steering qualitative reasoning,
and subsequently, in leaf nodes, a neural network performs the final inference only over the numerical attributes, if any,
ushering quantitative reasoning. Our work draws inspiration from such methodology to formalize the leaf-level hybridization
technique, performing the final prediction. Finally, in [17], decision trees replace neural networks’ final layer, and the method
shows promising results in computer vision. Their approach motivates our proposed root-level hybridization.

3. Background

In this section, we provide the needed foundational knowledge to comprehend the scope of this work. We begin by
explaining the multivariate time series concept and the corresponding classification challenges. Subsequently, we delve into
the systematic formulation of interval temporal decision trees, after an introduction to interval temporal logic. The section
culminates with an analysis of neural networks, which serve as the basis for our experiments.

3.1. Multivariate time series classification

Time series are observations interpreted over a linear order, that is, they are series of temporally ordered observations.
Time series can be univariate or multivariate, depending on whether there is only one measurement or multiple measure-
4

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
1 2 3 4 5 6 7 8 9 10

37

40 40
39

40

36
37

36
37

38
120

100
90

100 100
110

120 120
130 130

A1
A2

Fig. 2. Example of a multivariate time series with two attributes.

ments, and can be either numerical or categorical. Thus, a univariate time series is a single measurement evolving through
time, while a multivariate time series are multiple measurements that evolve.

Formally, let D = 〈{1, 2, . . . , N}, ≤〉 be a finite linear order of size N and A = {A1, . . . , An} be a vector space with n
dimensions called attributes. Then, a time series x is a signal drawn from the space of A-valued time series on D defined as:

X(D,A) = {x : D →A}.

Definition 1 (Time series dataset). Let X(D, A) the space of A-valued time series on D. Then, a time series dataset is a finite
set X = {x1, . . . , xm} ⊆X(D, A) of m time series (also called instances).

The dataset X is called labeled if each instance has a label from a set of labels Y (also called label space), that is,
X = {(x1, y1), . . . , (xm, ym)}, where yi ∈ Y , for all 1 ≤ i ≤ m. When labels are categorical, they are generally referred to as
classes. For a time series x ∈ X(D, A), let x(w)[i] denote the value of the time series x at point w in the ith component,
that is, the value of x at point w associated to Ai . Similarly, which is important in our context (as we shall see in the next
subsection), let x(w : v)[i] be the vector having exactly v − w + 1 values of Ai contained from point w to v (both included);
note that, for a finite linear order D of size N , x(1 : N)[i] denotes the entire univariate time series represented by Ai . An
example of multivariate time series is in Fig. 2, where x(4)[1] = 39 and x(6 : 8)[2] = (110, 120, 120).

The multivariate time series classification problem involves extracting a classifier from a collection of labeled multivariate
time series to recognize patterns that distinguish between classes. Existing multivariate time series classification methods
are feature-based (see, e.g., [41]), instance-based (see, e.g., [42]) and native ones (see, e.g., [43]). Time series describe a variety
of situations and their classification is an active area of research in many disciplines: air quality control and prediction in
climate science, prices and rates of inflation in economics, infectious diseases trends and spreading patterns in medicine,
pronunciation of word signs in linguistics, sensor recording of systems in aerospace engineering, among others [1].

3.2. Halpern and Shoham’s interval temporal logic

Since time series represent continuous processes, it makes little sense to describe temporal patterns in terms of time
points, and intervals are better suited. To this end, logical formalisms are needed to reason about time intervals.

While several different interval temporal logics have been proposed in the recent literature [44], Halpern and Shoham’s
interval temporal logic (HS) [45] is certainly the formalism that received the most attention, being the most natural logic
for time intervals. From a logical point of view, HS and its fragments have been studied on the most important classes of
linearly ordered sets, from the class of all linear orders, to the classes of linear orders that can be built on classical sets
such as N (natural numbers), Q (rational numbers) and R (real numbers) [45–47].

Let D be a finite linearly ordered set of size N . An interval over D is an ordered pair [w, v] starting from w and ending
in v (both included), where w, v ∈ D and w ≤ v . An interval is called point interval if w = v , and strict interval if w < v .1 If
we exclude the equality relation, there are twelve different binary ordering relations between two strict intervals on a linear
order, often called Allen’s interval relations [48]: the six relations RA (adjacent to), RL (later than), RB (begins), RE (ends), RD

(during), RO (overlaps), depicted in Fig. 3, and their six inverses, that is, RX = (RX)−1, for each X ∈ {A, L, B, E, D, O}. Let A
be the set of names of the twelve Allen’s interval relations:

A = {A,L,B,E,D,O,A,L,B,E,D,O}.
We associate an existential modality 〈X〉 with each Allen’s relation RX . Let P be a set of propositional letters. HS formulas
are generated by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X〉ϕ,

where p ∈ P and X ∈ A. The remaining Boolean connectives are derived as usual, and we say [X]ϕ if and only if ¬〈X〉¬ϕ ,
for each X ∈A.

1 Using both w and v as extrema of an interval intentionally clashes with the definition x(w : v) for a time series x ∈X(D, A).
5

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
HS modality Definition w.r.t. the interval structure Example
w v

w ′ v ′

w ′ v ′

w ′ v ′

w ′ v ′

w ′ v ′

w ′ v ′

〈A〉 [w, v]RA[w ′, v ′] iff v = w ′

〈L〉 [w, v]RL[w ′, v ′] iff v < w ′

〈B〉 [w, v]RB[w ′, v ′] iff w = w ′ ∧ v ′ < v

〈E〉 [w, v]RE[w ′, v ′] iff v = v ′ ∧ w < w ′

〈D〉 [w, v]RD[w ′, v ′] iff w < w ′ ∧ v ′ < v

〈O〉 [w, v]RO[w ′, v ′] iff w < w ′ < v < v ′

Fig. 3. Allen’s interval relations and HS modalities.

The strict semantics of HS are given in terms of timelines (or, more commonly, interval models):

K = (W, {RX}X∈A, V),

where W is the set of strict intervals over D, RX are Allen’s interval relations, and V is a valuation function V :W → 2P

which assigns to every interval [w, v] the set of propositional letters V ([w, v]) ⊆ P that are true on it.2 For a timeline K,
an interval [w, v] (in that model) and a formula ϕ of HS (to be evaluated on that model), the truth relation K, [w, v] � ϕ

is defined by structural induction on the complexity of formulas:

K, [w, v] � p iff p ∈ V ([w, v]), for all p ∈ P;
K, [w, v] � ¬ψ iff K, [w, v] �� ψ;
K, [w, v] � ψ1 ∨ ψ2 iff K, [w, v] � ψ1 or K, [w, v] � ψ2;
K, [w, v] � 〈X〉ψ iff ∃ [w ′, v ′] s.t. [w, v]RX[w ′, v ′] and K, [w ′, v ′] � ψ,

where X ∈ A. Note that relations in A are mutually exclusive and jointly exhaustive with respect to W; as such, exactly
one relation holds for each pair of intervals in W , and an existential global operator can be defined by disjunction of all
modal operators:

〈G〉ϕ = ϕ ∨
∨
X

〈X〉ϕ,

with X ∈A. The global operator allows to express global formulas (e.g., “there exists an interval anywhere...”), that is formu-
las of the kind:

ϕg ::= ¬ϕg | ϕg ∨ ϕg | 〈G〉ϕ
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X〉ϕ | 〈G〉ϕ,

with p ∈ P and X ∈A. Given that any global formula ϕg either holds on all worlds of a timeline K, or it does not hold on
any world of K, we can think of ϕg as a property that K can have. As such, we write K � ϕg when ϕg holds on all worlds,
and K �� ϕg otherwise.

Interval temporal logics have been studied in the literature from a deductive standpoint. Satisfiability for HS is un-
decidable [45], and that various fragments have been considered in the literature to define fragments or variants of HS
with better computational behavior. These include constraining the underlying temporal structure [49], restricting the set of
modal operators [50,46], limiting the propositional power of the languages [51], and considering coarser interval temporal
logics based on interval relations that describe a less precise relationship between intervals (similarly to what topological
relations do) [52].

3.3. Interval temporal decision trees

In this subsection, we shall see how to extract knowledge (in terms of logical rules) from raw multivariate time series.
Canonical decision trees (DTs), essentially based on propositional logic, are not able to learn directly from temporal struc-
tures, and linear temporal logic-like decision trees (such as, e.g., in [53,54]) learn point-based patterns, which, as we have
observed, may not be right inductive bias choice for continuous processes. Interval temporal logic decision trees (TDTs),
instead, learn HS properties by extending the classical learning schema of DTs, to capture relations among time intervals.

2 In the standard literature, timelines are Kripke models, where the worlds are intervals.
6

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
Let τ = (V, E) be a full directed binary tree with nodes in V and edges in E ⊆V ×V . We denote by root(τ) the root of
τ , by V� ⊆V the set of its leaf nodes (or, simply, leaves), and by V ι the set of its internal nodes (i.e., non-leaf nodes). We
also denote nodes (either root, internal or leaf) by ν, ν ′, . . . , ν1, ν2, . . . and leaves by �, �′, . . . , �1, �2, Each non-leaf node
ν of a tree τ has a left (resp. right) child �(ν) (resp.,

�
(ν)), and each non-root node ν has a parent � (ν). For every y ∈Y ,

where Y is the label space, we denote by leaves(y) the set of leaves of τ labeled with y. A path π = ν0 � νh in τ of length
h ≥ 0 between two nodes ν0 and νh is a finite sequence of h + 1 nodes such that νi = � (νi+1), for each i = 0, . . . , h − 1. For
a path π and for a node ν in τ , πν denotes the unique path root(τ) � ν . Moreover, for a path π , the set of its improper
prefixes is denoted by pref ix(π). Finally, a branch of τ is a path π� , for some � ∈ V � .

Canonically, datasets are structured, meaning that, with respect to time series datasets, the attributes do not evolve
through time. A structured dataset induces the following set of propositional letters:

P = {A �� a | A ∈A,��∈ {<,≤,=, �=,≥,>}, and a ∈R}.
Observe that such a definition is natural for standard DTs. Indeed, DTs work by recursively testing scalar conditions on the
values of input features (A); it is immediate to observe that the definition of induced propositional letters encodes such a
concept.

A time series dataset generalizes to the temporal case a structured one, by postulating that finite timelines describe
instances/time series in which attributes change value across the different intervals. The key idea of (interval) TDTs is
that they naturally reason over intervals of temporal ordered structures, such as, but not limited to, time series, without
any transformation of the input signals. Since reasoning is interval-based, we can guide the learning process by making
decisions over the entire set of values within a certain strict interval. Thus, let F = { f1, . . . , fr} be a set of feature extraction
functions, where f i : ⋃N

d=2 R
d → R, for each i = 1, . . . , r. Each feature extraction function f ∈ F computes a real number

given the vector of values for an attribute A within a certain strict interval whose length vary from 2 (the minimum size of
an interval) to N (the maximum size of an interval, i.e., the size of the entire time series); with a slight abuse of notation,
we denote the result of this computation by f (A). A time series dataset induces the following propositional letters (that
consider the interval-based reasoning):

P = { f (A) �� a | f ∈ F , A ∈A,��∈ {<,≤,=, �=,≥,>}, and a ∈R}.
Feature extraction functions should be, in principle, simple functions, ranging from the average, minimum or maximum
value, to more complex yet interpretable functions (e.g., Catch22 feature functions [55], which are studied ad-hoc for time
series).

The following definition extends the one for splitting instances in DTs, which we use to define TDTs.

Definition 2 (Decisions). Let P be a set of propositional letters. Then, the set of (temporal) split-decisions (or, simply, decisions)
is:

	 = {p,¬p, 〈X〉p, [X]¬p | p ∈ P and X ∈A}.

We partition the set 	 into the set of existential decisions 	e = {p, 〈X〉p | p ∈ P and X ∈ A} and the set of universal
decisions 	u = 	 \ 	e . Moreover, decisions are said to be propositional if they are of the type p or ¬p. The dual of p ∈ 	e

(resp., 〈X〉p ∈ 	e) is ¬p ∈ 	u (resp., [X]¬p ∈ 	u), and vice versa; in general, we denote by λ the dual of λ ∈ 	.

Definition 3 (Interval temporal decision trees). Let 	 be a set of decisions and Y a label space. Then, an interval temporal
decision tree (TDT) is a structure:

τ = (V,E, l, e),

where:

• (V, E) is a full directed binary tree,
• l :V� →Y is a leaf-labeling function that assigns an element from Y to each leaf node in V� ,
• e : E→ 	 is a edge-labeling function that assigns a decision from 	 to each edge in E ,

such that e(ν, ν ′) = ¬e(ν, ν ′′), for all (ν, ν ′), (ν, ν ′′) ∈ E .

Note that a DT is a TDT where the decisions are propositional only. Fig. 4 illustrates an example of TDT.
We discuss how formulas of an interval temporal decision tree are built.

Definition 4 (Node agreements). Let τ be an interval temporal decision tree and let π = ν0 � νh be a path in τ . Given two
nodes νi, ν j ∈ π , with i, j < h, we say that they agree, denoted by agr(νi, ν j), if νi+1 = �

(νi) and ν j+1 = �
(ν j), and we say

that they disagree, denoted by dis(νi, ν j), if νi+1 = �(νi) and ν j+1 = �
(ν j).
7

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
ν0

ν1 �4 �→ y1

ν2 �3 �→ y2

�1 �→ y1 �2 �→ y2
〈L〉

m
in
(A

1
)
≥ 39

[L]m
in(A

1)
<

39

〈O〉
av

g(
A 2

)
≥ 11

0 [O]avg(A
2)

<
110

〈B〉
m

ax
(A

1
)
≥ 40

[B]m
ax(A

1)
<

40

Fig. 4. Example of an interval temporal decision tree. Note that it holds, for example, that root(τ) = ν0, �
(ν0) = ν1, and �

(ν1) = ν2.

Definition 5 (Path-, leaf-, and class-formulas). Let τ be an interval temporal decision tree. For each path π = ν0 � νh in τ ,
the path-formula ϕπ is inductively defined as:

• if h = 0, then ϕπ = �;
• if h = 1, then ϕπ = e(ν0, ν1);
• if h > 1, let λ = e(ν0, ν1) and π ′ = ν1 � νh , then

ϕπ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λ ∧ ϕπ ′) if λ = p and agr(ν0, ν1);
〈X〉(p ∧ ϕπ ′) if λ = 〈X〉p and agr(ν0, ν1);
λ ∧ (λ → ϕπ ′) if λ = p and dis(ν0, ν1);
λ ∧ [X](p → ϕπ ′) if λ = 〈X〉p and dis(ν0, ν1);
(λ ∧ ϕπ ′) if λ ∈ 	u .

Moreover, for a leaf �, the leaf-formula ϕ� is defined as:

ϕ� =
∧

π∈pref ix(π�)

ϕπ ,

and, for a class y, the class-formula ϕy is defined as:

ϕy =
∨

�∈leaves(y)

ϕ�.

For example, consider the TDT in Fig. 4. Then, the path-formula π�1 for �1 is:

ϕπ�1
= 〈L〉(min(A1) ≥ 39 ∧ 〈O〉(avg(A2) ≥ 110 ∧ 〈B〉max(A1) ≥ 40)

)
,

and the class formula ϕy1 for y1 is:
8

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
ϕy1 =
(ϕπν1︷ ︸︸ ︷

〈L〉min(A1) ≥ 39∧
ϕπν2︷ ︸︸ ︷

〈L〉(min(A1) ≥ 39 ∧ 〈O〉avg(A2) ≥ 110)∧
ϕπ�1︷ ︸︸ ︷

〈L〉(min(A1) ≥ 39 ∧ 〈O〉(avg(A2) ≥ 110 ∧ 〈B〉max(A1) ≥ 40)
))∨

ϕπ�4︷ ︸︸ ︷
[L](min(A1) < 39) .

We shall define how HS formulas are interpreted on time series. To this end, we need to interpret HS formulas
over time series. We do so by identifying time series as timelines, and by interpreting propositional formulas of the type
f (Ai) �� a as:

x, [w, v] � f (Ai) �� a iff f (x(w : v)[i]) �� a.

Now, we can exploit the truth relation for HS (see Subsection 3.2), where TDTs learn (and provide) HS formulas that
must be checked on time series x (seen as timelines).

The classification of a single time series x ∈ X(D, A) starts at the root. Each series (that is, each timeline) has an initial
dummy interval [−1, 0] �∈ D so that the only feasible operators at the beginning of the classification process are 〈L〉 for the
left branch and [L] for the right branch; in this way, we can describe (shift-invariant) patterns that appear anywhere in the
series. For a time series x and formula ϕ , we use x � ϕ to denote x, [−1, 0] � ϕ . Thus, a learned TDT classifies a time series
as follows.

Definition 6 (Run of interval temporal decision trees). Let τ = (V, E, l, e) be an interval temporal decision tree, ν a node in τ ,
and x a time series. Then, the run of τ on x from ν , denoted by τ (x, ν), is defined recursively as:

τ (x, ν) =

⎧⎪⎨
⎪⎩

l(ν) if ν ∈ V �;
τ (x, �(ν)) if x � ϕπ �

(ν)
;

τ (x,
�
(ν)) if x � ϕπ �

(ν)
.

Finally, the run of τ on x, denoted by τ (x), is defined as τ (x, root(τ)).

Consider the time series x in Fig. 2 and the TDT τ in Fig. 4. Then, we have that:

τ (x, root(τ)) = τ (x, ν1) (x � ϕν1)= τ (x, ν2) (x � ϕν2)= τ (x, �1) (x � ϕ�1)

= l(�1) (�1 ∈V�)

= y1.

We can complete the logical interpretation of temporal decision trees by defining leaf- and class-rules, which model the
knowledge that certain formulas are sufficient and necessary conditions for a given class.

Definition 7 (Leaf- and class-rules). Let τ be an interval temporal decision tree. Then, for a leaf �, the leaf-rule ρ� is defined
as an object:

ϕ� ⇒ l(�),

and, for a class y, the class-rule ρy is defined as an object:

ϕy ⇔ y.

Rules, as defined above, are written in a non-logical language because classes are not logical elements; however, in the
context of decision trees, they behave like logical implications. Referring, once more, to the example tree in Fig. 4, the
leaf-rule ρ�2 is:

(〈L〉p︸︷︷︸
ϕπν

∧〈L〉(p ∧ 〈O〉q)︸ ︷︷ ︸
ϕπν

∧〈L〉(p ∧ 〈O〉q ∧ [O](q → [B]r))︸ ︷︷ ︸
ϕπ�

) ⇒ y2,
1 2 2

9

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
where p = min(A1) ≥ 39, q = avg(A2) ≥ 110, r = max(A1) < 40. In a sense, a leaf-rule provides a sufficient condition for a
class. In the particular case of this example, the above leaf-rule can be simplified into:

〈L〉(p ∧ 〈O〉q ∧ [O](q → [B]r)) ⇒ y2,

which can be easily interpreted in natural language: IF there exists an interval where the minimum of attribute 1 is not less than
39, that is overlapping with at least another interval where the average of attribute 2 is not less than 110, and that all such intervals are
prefixed by smaller intervals that all have the maximum of attribute 2 smaller than 40 THEN the instance belongs to y2. The class-rule
ρy2 is:

〈L〉(p ∧ 〈O〉q ∧ [O](q → [B]r))︸ ︷︷ ︸
ϕ�2

∨ (〈L〉p ∧ [L](p ∧ [O]¬q))︸ ︷︷ ︸
ϕ�3

⇔ y2,

which, in turn, can be interpreted as a necessary and sufficient condition for y2. It is crucial to stress that simple feature
extraction functions like the minimum and maximum values lead to more intuitive sentences/concepts; for this reason, the
use of such functions enables more interpretable models, which, as we shall see, we use as the pure symbolic baseline in
our experiments.

Given a dataset of m time series, any classification rule for a class can be evaluated in terms of precision and degree of
applicability, by considering the number of instances m� that reached to the corresponding leaf, and the number of instances
mc

� that the rule correctly classifies. Two widely used metrics in this context are the confidence and support, defined by:

confidence =mc
�

m�

support =m�

m
.

Statistical trade-offs between these two metrics often emerge.
Extracting optimal DTs from a structured (or tabular) dataset in terms of the relation between their height and per-

formance is an NP-hard problem [56], justifying sub-optimal procedures. As such, greedy recursive algorithms like ID3,
C4.5, and CART are preferred [9,57]. Without loss of generality, the standard way of learning binary DTs for classification is
straightforward: given a set of predefined, finite set of split conditions 	̂, starting from the root node that has the entire
(labeled) dataset associated, select the locally optimal split decision, that partitions the dataset into two subsets, creating a
split node, passing the two subsets to the children, and recursively call the same procedure on both children. This procedure
propagates down the tree subsets containing progressively similar intra-node and dissimilar inter-node class values at any
given level of the tree. Information-based metrics (e.g., Entropy and Gini-index) evaluate the (dis)similarity. The procedure
continues until a stopping criterion applies based on the purity of a node (i.e., how is the distribution of class values),
producing a leaf node. We deal with time series datasets in our context, and standard DTs are not immediately applicable,
as they work only on structured datasets. In many data science and machine learning contexts, a way to deal with such an
issue is the compress the temporal information of time series into a (coarser) feature representation, producing a structured
dataset. There are at least two downsides to such a naive strategy. First, we lose the essential temporal dimension by shifting
from N points to just one. Second, local patterns are lost because the resulting feature representation aims to summarize
the (temporal) information globally. Accordingly, using DTs to learn from time series datasets might be the wrong inductive
bias, motivating the design of TDTs.

Regarding the learning of TDTs, we exploit the CART algorithm to learn DTs for which a modern version in the Julia
programming language is available [57]. TDTs belong to the broader class of modal decision trees [58], for which an imple-
mentation of a CART-like learning algorithm is available in the Julia language [58]. It is crucial to stress that the added
complexity of inducing TDTs lies in the fact that such algorithms must make more expressive decisions due to the usage of
HS. Specifically, in DTs, decisions are simple proposition letters, while in TDTs, decisions also encompass interval-interval
relations and feature extractions, but the general idea of greedy, recursive selection of split conditions remains. As such,
the structure of the decisions is a hyperparameter (e.g., which interval-interval relations and feature extraction functions to
use). Moreover, in line with DTs, other hyperparameters for TDTs are the information metric to evaluate the goodness of
split conditions (e.g., Shannon Entropy [59]), and, as stopping criteria preventing the occurrence of little informative splits,
the minimum information gain at the split nodes, the minimum number of instances at leaf nodes, and maximum informa-
tion at leaf nodes. A formal presentation on learning TDTs is beyond the scope of this work, but the reader can refer to [11]
for a formal presentation (and pseudocode). DTs are generalizable into sets of decision trees that operate by a majority
voting policy. Coupling this scheme with bagging [60], an ensemble learning technique that ultimately reduces the variance
of the models, in this case, sets of trees are often called random forests [61]. They tend to perform much better than single
trees and are more popular. While they are considered to be on the verge between symbolic and sub-symbolic learning,
their symbolic nature is still evident: sets of trees, similar to single trees, can be analyzed and discussed, and although the
process of extracting rules is not as immediate as in single trees, it is still possible [62–64]. The generalization forest models
are also straightforward for TDTs [10,11].
10

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
x

h

y

=⇒
Unfold

x(t − 1) x(t) x(t + 1)

h(t − 1) h(t) h(t + 1)

y(t − 1) y(t) y(t + 1)

. . .

Wxh

Whh

Why

Whh Whh Whh

Wxh Wxh Wxh

Why Why Why

Whh

Fig. 5. Architecture of recurrent neural networks.

3.4. Neural networks

Neural networks are computational models composed of a graph of many simple computational cells, called neurons.
A layer in a neural network is a set of neurons that computes its values using those from previous layers. Each a neuron
calculates a value by applying a linear computation on the output values of neurons of the previous layer, followed by a non-
linear activation function (e.g., sigmoid and tanh). The first layer holds the network’s input, and the last layer produces the
network’s output. As such, a neural network is essentially a mathematical function υ that is the composition of many non-
scalar, non-linear functions. Neural networks have proven highly effective at solving complex learning tasks in supervised
and unsupervised settings.

Regarding temporal applications, recurrent neural networks (RNNs) are the go-to architecture, given their ability to pro-
cess data sequentially and maintain information about the past to make predictions about future inputs. RNNs have hidden
states h(t) updated at each timestep t and passed to the next timestep as input, allowing the network to learn patterns
across a time dimension. Gated recurrent units (GRUs) are popular RNN-like architectures with a gating mechanism that
enables the networks to selectively update their hidden state based on the current input and previous hidden state. GRUs
effectively address the vanishing gradient problem, where the gradients become smaller and smaller as they propagate
through the networks, eventually disappearing, preventing the networks from learning long-term dependencies. Fig. 5 il-
lustrates the general architecture of RNNs. In our context, we deal with time series x = (x(1), x(2), . . . , x(N)) with N time
points (i.e., the size of the linear order D), where x(t) is a column vector of n values for each of the attributes Ai ∈ A .
RNNs calculate their hidden state at time t as follows:

h(t) = φ(Whhh(t − 1) + Wxhx(t)),

where φ is a non-linear activation function, and Whh and Wxh are hidden-to-hidden and input-to-hidden learnable weight
matrices, respectively. Typically, the elements of h(0) are all zeros. Moreover, RNNs calculate their output at time t as
follows:

y(t) = softmax(Whyh(t)),

where softmax produces valid probabilities and Why is a hidden-to-output learnable weight matrix. It is crucial to stress
that the output is optional in vanilla RNNs, and we draw inspiration from such an observation to present the hybridization
techniques.

The typical approach when tackling a classification problem by neural network training involves structuring the network’s
last layer with as many neurons as the number of classes and training the network to output high values for neurons cor-
responding to the correct classes. To this end, the softmax function produces a probability distribution over the classes,
followed by an argmax function to select the class with the highest probability. Fig. 6 schematically illustrates the classifi-
cation neural network models. In this case, the neural network ῡ returns the predicted class ŷ ∈Y for an input time series
x ∈X(D, A), that is, ῡ(x) = ŷ. As we shall see, we use such architectures for the leaf-level hybridizations.

Feature extraction and clustering are also possible with neural networks in the unsupervised setting. As for feature
extraction, the most common technique is autoencoding. Autoencoders are neural networks that extract significant fea-
ture representations from (unlabeled) data. This process is possible by training the networks to reproduce their input (i.e.,
learning the identify function) while introducing an information bottleneck (i.e., reducing the hidden states dimension).
The neural networks are encoder-decoder architectures, where the encoder ends with a layer with a reasonably small num-
ber of neurons fed into the decoder as input. As such, the encoder compresses the input while the decoder takes such
representation to reproduce the original information. For this work, we consider sequence-to-sequence architectures [65] as
11

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
softmax
argmax

ῡ :RNn →Y

RNn

Rk

Y

Fig. 6. Architecture for neural networks for the leaf-level hybrid.

−→υ : ⋃N
d=2 R

d →Rk

⋃N
d=2 R

d

Rk

←−υ :Rk → ⋃N
d=2 R

d

⋃N
d=2 R

d

Fig. 7. Architecture for neural networks for the split-level hybrid.

softmax

υ̂ :RNn →Rk

RNn

Rk

Rk

Fig. 8. Architecture for neural networks for the root-level hybrid.

autoencoders. In autoencoders, the encoder and decoder consist of several layers of neurons (typically decreasing in the en-
coder and increasing in the decoder). On the other hand, in sequence-to-sequence models, the sequential structure of RNNs
preserves the input’s time component, which we use for our purposes. Moreover, canonically, in sequence-to-sequence neu-
ral networks, the last hidden state h(N), also called context, is taken by the decoder to produce its output.

Like autoencoders, in our setting, the sequence-to-sequence encoders approximate the identity function to represent
the input, making it reproducible by the decoder. In essence, we use such encoders as feature extractors. Fig. 7 depicts
the encoder-decoder architectures that we use for the split-level hybridizations. In this case, the encoder neural networks −→υ compress their input

⋃N
d=2 R

d (recall our definition of feature extraction functions in Subsection 3.3) into a lower
dimensional representation Rk , and the decoders ←−υ take such representation to reproduce the original signal.

Autoencoders also suit well for clustering. Recall that neural feature extractors output lower dimensional vector repre-
sentations. Such representations can be the input to standard or specific clustering algorithms. For our purposes, instead, we
use such representations to weigh the downstream predictions. Fig. 8 illustrates the architecture that we harness to define
root-level hybridizations. In this case, the neural networks υ̂ produce lower dimensional representations Rk , followed by
the softmax function, producing k valid probabilities. As we shall see, one can virtually imagine that the root nodes of TDT
root-level hybrids embed such architectures. Our definitions of TDTs have binary splits (i.e., have two children). Embedding
such clustering-like architectures into root nodes produces k children, which, in turn, are TDTs. As such, each TDT predicts a
class for a specific time series, and the hybrid root nodes weigh such predictions based on the probabilities. Therefore, the
root-level hybrids measure the contribution of each of their k children for the final prediction.

The typical approach for learning neural networks involves initializing a network’s with random weights and iteratively
updating the weights at each layer based on the direction of the gradients. This basic optimization algorithm, called gra-
12

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
dient descent, has improved over the years by introducing more sophisticated techniques like Adam [66] and its variant
AdamW [67]. These approaches help by incorporating adaptive learning rates and momentum, enabling faster convergence
and effectively navigating complex loss landscapes. The learning rate guides the update of the weights, which value influ-
ences the speed and quality of convergence in the training process. During training, the model processes the training set
many times (epochs), enabling gradual refinement and better generalization of the learned features and patterns. The model
weights can be updated during each iteration at different moments, depending on the training strategy. A common strategy
is the so-called batch gradient descent: it consists of processing the training set into non-overlapping subsets (or batches),
and performing a unique update of the weights at each epoch, that is the average of the individual update given by each
instance in the batch. The model processes the batch passing through the network, calculating the loss function, and updat-
ing the weights. The loss function depends on the task and guides the training process by quantifying the disparity between
predicted and actual outcomes. Some examples of loss functions are the cross-entropy loss for classification tasks and MSE
(mean squared error), RMSE (root mean squared error), or MAE (mean absolute error) for regression tasks.

4. Neural-symbolic hybrids

This section presents three schemes for injecting neural computation into any decision tree model. The three resulting
models arise when considering injection into a single device of the original tree: leaf, split, or root nodes. Since the infusion
only affects the inner workings of one of these mathematical objects, we name the three schemes leaf hybridization, split
hybridization and root hybridization. We formalize the corresponding neuro-symbolic hybrid models for each scheme, adapt-
ing the presentation to the case of interval temporal decision trees (TDTs) and recurrent neural networks, and propose a
learning algorithm accordingly. The proposed algorithms are based on the training algorithms for the underlying trees and
networks and, thus, inherit their hyperparameters. Note that the schemes can be combined, giving rise to seven different
hybrid models, which can, together with the pure decision tree, be partially ordered according to their residual level of
interpretability, as illustrated in Fig. 1. In all cases, the resulting hybrid models and learning settings extend and generalize
those of their pure symbolic and neural constituents.

4.1. Leaf hybridization

Similarly to [16], leaf hybridization consists of replacing the class labels at the leaves of the tree with neural networks,
that are to be applied on any instance reaching the leaf, in order to obtain the final classification. This kind of leaf-level hybrid
first performs a clustering step by means of interpretable, symbolic computation, and then delegates the final classification
to some neural network that is, in principle, more specific to that cluster. A few modifications to the leaf-labeling function,
and the operational semantics of the temporal tree suffice to formalize this model.

Definition 8 (Leaf-level interval temporal decision tree hybrids). Let 	 be a set of decisions, Y a label space, and N a set of
neural network classifiers of the type ῡ :RNn →Y . Then, a leaf-level (interval) temporal decision tree hybrid is a structure:

τleaf = (V,E, l, e),

where:

• (V, E) is a full directed binary tree,
• l :V� →N is a leaf-labeling function that assigns a neural network classifier to each leaf node in V� ,
• e : E→ 	 is a edge-labeling function that assigns a decision from 	 to each edge in E ,

such that e(ν, ν ′) = ¬e(ν, ν ′′), for all (ν, ν ′), (ν, ν ′′) ∈ E .

Definition 9 (Run of leaf-level temporal decision tree hybrids). Let τleaf = (V, E, l, e) be a leaf-level temporal decision tree
hybrid, ν a node in τ , and x a time series. Then, the run of τ on x from ν , denoted by τ (x, ν), is defined recursively as:

τ (x, ν) =

⎧⎪⎨
⎪⎩

l(�)(x) if ν ∈ V �;
τ (x, �(ν)) if x � ϕπ �

(ν)
;

τ (x,
�
(ν)) if x � ϕπ �

(ν)
,

Finally, the run of τ on x, denoted by τ (x), is defined as τ (x, root(τ)).

While the definitions of leaf- and class-formulas (Definition 5) remain the same, leaf-rules (Definition 7) have neural
classifiers as consequents, which slightly changes the semantics: a leaf-formula ϕ� ⇒ ῡ� , has the semantics IF instance x
satisfies the leaf-formula ϕ� THEN it belongs to ῡ�(x). An advantage of this computational model is that the antecedents of the
rules are still logical formulas, and thus, some form of interpretation of the knowledge is still possible. The antecedents, in
13

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
softmax
argmax

ῡ :RNn →Y

RNn

Rk

Y

�
.
.
.

�i �→ ῡ�i
� j �→ ῡ� j

〈X〉
p

[X]¬
p

−→υ : ⋃N
d=2 R

d →Rk

⋃N
d=2 R

d

Rk

←−υ :Rk → ⋃N
d=2 R

d

⋃N
d=2 R

d

�
.
.
.

.

.

.

�

.

.

.

�

〈X〉
(
−→υ

j
i
(A

i)
�� a)

[X]¬
(−→υ

j
i (A

i) ��
a)

softmax

υ̂ :RNn →Rk

RNn

Rk

Rk

υ̂(·)

� . . . �

Fig. 9. Neural-symbolic interval temporal decision trees: leaf-level hybrid (left), split-level hybrid (middle), root-level hybrid (right).

fact, still induce a partitioning of the instance space, which can be inspected and enhanced with expert knowledge. On the
other hand, with such a model there is no natural way of deriving class-rules.

In principle, the proposed learning algorithm for this hybridization scheme requires training a pure decision tree, as
well as a neural network classifier for each leaf, using the instances that reached the leaf itself. To this end, we make the
following observations. Regarding the training dataset, the sub-datasets traversing the tree to the leaves are exponentially
smaller; therefore, simply training each network on the set of instances that reached the leaf may result in a weaker model.
Since such an algorithm must ensure that a high enough number of time series is used to train each neural network, we
use a strict pre-pruning policy. Leveraging the recursive structure of the tree, we propose a layered training algorithm, based
on hierarchical fine-tuning. At the beginning, a master network is trained, associated to the root node of the tree, and two
copies of it are associated to the child nodes; then, in a top-down fashion, the network associated to each node of the
tree is fine-tuned with the set of instances that reached that node, and two copies of it are propagated (and associated) to
the child nodes. In the end, each leaf node � holds a copy of the original network that has been fine-tuned many times,
each time becoming more and more specific to the current partition of the instance space; the leaf, then, is labeled with
the network itself. Hyperparameters for these models are those used by the underlying decision tree and neural network
classifier learning algorithms, as well as the hyperparameters used for the fine-tuning, since their values may differ from
those used for the training of the master network. This hybrid collapses to a pure tree when the neural architecture in use
collapses to a simple constant model (i.e., a model that only outputs the majority class); moreover, it collapses to a neural
network classifier when the tree consists of a single leaf. Fig. 9 (left) shows the schema for such hybrids.

4.2. Split hybridization

Similarly to [15], we design a split-level hybrid, that splits instances based on neural feature extractors. Recall the def-
inition of feature extraction functions from Subsection 3.3, that is, functions of type f : ⋃N

d=2 R
d → R acting on specific

attributes Ai of the time series. This hybridization strategy requires training n single-attribute encoders −→υ 1, . . . , −→υ n before
decision tree training via autoencoding, with −→υ i : ⋃N

d=2 R
d →Rk , for each 1 ≤ i ≤ n. Recall that such encoders learn vector

representations of arbitrary size k, and we can consider each vector value as a different scalar feature. Therefore, we obtain
the following neural propositional letters:

Pneuro = {−→υ j
i (Ai) �� a | i ∈ [1,n], j ∈ [1,k],��∈ {<,≤,=, �=,≥,>},a ∈R},

where −→υ j
i (Ai) is the value in the j-th component of the feature vector −→υ i(Ai).

It is immediate, now, to define neural decisions, essentially by replacing P with Pneuro in Definition 2.

Definition 10 (Neural decisions). Let Pneuro be a set of neural propositional letters. Then, the set of (temporal) neural split-
decisions (or, simply, neural decisions):

	neuro = {p,¬p, 〈X〉p, [X]¬p | p ∈ Pneuro,X ∈A}.

14

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
These decisions are usable in conjunction with standard propositional decisions.
Hybrid split-level TDTs are pure TDTs having a set of non-neural propositional letters and a set of neural propositional

letters, as follows.

Definition 11 (Split-level interval temporal decision tree hybrids). Let 	 be a set of decisions, 	neuro a set of neural decisions,
and Y a label space. Then, a split-level (interval) temporal decision tree hybrid is a structure:

τsplit = (V,E, l, e),

where:

• (V, E) is a full directed binary tree,
• l :V� →Y is a leaf-labeling function that assigns an element from Y to each leaf node in V� ,
• e : E→ 	neuro ∪ 	 is a edge-labeling function that assigns a (neural or non-neural) decision to each edge in E ,

such that e(ν, ν ′) = ¬e(ν, ν ′′), for all (ν, ν ′), (ν, ν ′′) ∈ E .

Note that the remaining definitions for the pure case also apply to this model; furthermore, this hybrid collapses to the
pure tree when 	neuro = ∅.

The proposed learning algorithm in this case involves, first, training n neural feature extractors, and then, using them to
learn split-level TDT hybrids. Each feature extractor is trained via autoencoding on a specific attribute. Since each feature
extractor is applied on any sub-interval of the series (which is, itself, a series), the n (single-attribute) datasets used for
training the encoders are augmented with all of their sub-intervals; in this way, the models are trained to extract feature
vectors from any sub-interval. A schema for such hybrids is shown in Fig. 9 (middle).

4.3. Root hybridization

A natural counterpart of the leaf hybridization requires performing some neural computation first, followed by some in-
terpretable one. Elaborating on this idea, we can design a hybrid that performs a clustering step by means of uninterpretable
computation, and delegates the final classification to one of many decision trees that are, in principle, more specific to the
kind of instance at hand (similarly to [17]); we name this model root-level hybrid. As in the case of split hybridization, the
neural clustering relies on a neural feature extractor that outputs a vector representation of size k. Since, as before, each
of these values is a real number capturing a specific (but unknown) characteristic of the input instance (e.g., in the case
of a time series, the level of irregularity), the feature vector can be used to label the instance as belonging to a cluster. In
principle, a standard clustering algorithm can perform such a task. However, to avoid relying on non-neural techniques, we
propose a different clustering policy: we weight the outputs of the k decision trees by applying the softmax function to the
feature vector (of length k). Note that weighting the outputs of all trees, instead of delegating the computation to a single
one of them (e.g., the one corresponding to the maximum of the softmaxed values) breaks the symmetry with the leaf-level
hybrid, where, instead, only one of the neural networks is responsible for the final outcome. However, differently from a
decision tree, where the input information travels compactly along a single path, the information in a neural network flows
through the whole model resulting in a dense output vector, capturing unknown features of the input. With this in mind, to
limit the final classification to a single model (focusing on one of these single characteristics) is an arbitrary choice, and may
hamper the performance. Furthermore, while the hard clustering approach trains each tree on an average of m/k instances,
this approach trains each tree on all m instances, leveraging the full extent of the data available.

We now define the hybrid root-level TDTs and their run.

Definition 12 (Root-level interval temporal decision tree hybrids). Let 	 be a set of decisions and Y a label space. Then, a
root-level (interval) temporal decision tree hybrid is a structure:

τroot = (υ̂, {τ1, . . . , τk}),
where:

• υ̂ is a neural network-based clustering model,
• τ1, . . . , τk are temporal decision trees on 	 and Y .

Definition 13 (Run of root-level temporal decision tree hybrids). Let τroot = (υ̂, {τ1, . . . , τk}) be a root-level interval temporal
decision tree hybrid, and x a time series. Then, the run of τroot on x, denoted by τroot(x), is defined as:

τroot(x) = argmax{�τi(x)=yυ̂
i(x)}.
y

15

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
The proposed learning algorithm starts by training a single encoder −→υ : RNn → Rk via autoencoding on the whole
dataset; the neural root is, then, a network defined by υ̂(x) = sof tmax(−→υ (x)) Then, k decision trees are trained on the
same dataset, but with different weights for each instance; more specifically, when training the i-th decision tree, each time
series x is weighted by υ̂ i(x), that is, the value of the i-th component of the vector υ̂(x). This hybrid collapses to the pure
case when k = 1. The schema for such hybrids is shown in Fig. 9 (right).

5. Experimental results

To assess the performances of hybrid temporal decision trees, we carried out several experiments in two batches. In
the first set, we considered the task of diagnosing COVID-19 from audio samples of coughs and breaths. The tasks have
been posed as binary, multivariate time series classification problems [18,19], and both temporal decision trees [11] and
neural networks [20–24] have proven their efficacy. As a by-product of these experiments, we learned which hybrid model
seems to work best; we used this information to organize a second set of experiments, with a similar dataset for diagnosing
various respiratory diseases. The dataset is the Respiratory Sound Database [25], which contains audio recordings of respi-
ratory cycles from healthy and non-healthy subjects. In this second case, we limited ourselves to consider the best hybrid
combination.

5.1. Experiment 1: choosing the best hybrid model

5.1.1. Data
The data used for these experiments was originally crowdsourced by researchers at the University of Cambridge [18],

and includes 9986 labeled audio samples recorded by 6613 volunteers. Most of the cough and breath recordings contained
several episodes, thus a semi-automated segmentation of the audio samples was performed, deriving a pool of audio samples
containing single coughs and single breaths. Following the original paper, from this pool, three binary classification tasks
were designed, resulting in three cough classification datasets (C1, C2, C3), and three breath classification datasets (B1, B2,
B3). The tasks were:

1. to distinguish between declared positive subjects, and negative ones that have a clean medical history, have never
smoked, and have no symptoms;

2. to distinguish between declared positive subjects with cough as symptom, and negative ones that have a clean medical
history, have never smoked, and have cough as a symptom;

3. to distinguish between declared positive subjects with cough as symptom, and negative ones that have asthma, have
never smoked, and have cough as a symptom.

To counteract the small amount of negative instances for tasks C2, B2, C3, and B3, audio augmentation methods were used
in both.

Different techniques were used to clean and normalize each audio, including noise gate, peak normalization, silence re-
moval, pitch normalization. Each audio sample was, then, processed using a variant of the Mel-Frequency Cepstral Coefficients
(MFCC) [68], a widespread technique for extracting spectral representations of sounds, facilitating their interpretation in
terms of audio frequencies. Our MFCC variant produces, for each sample, a multivariate time series representation where
the n = 15 attributes describe the power of the different sound frequencies. Finally, moving average filters were applied,
reducing the number of time points and the computational load; a moving average of length 10 and step 7 was used for
cough tasks, and one of length 75 and step 60 was used for breath tasks. A more detailed description of both the data
and the data processing steps can be found in [11]. Note that, in order to preserve interpretability of the results, the data
processing steps, here, slightly differ from those of the original work; as a result, the six resulting datasets only serve for an
internal performance comparison, as well as for benchmarking the hybrid models.

5.1.2. Experimental setting
For each classification task, the experiments were conducted in a randomized cross-validation setting with 10 repetitions,

where the validation sets are roughly 4 times larger than the training sets (i.e., a standard 80%-20% train-validation splitting
policy), and both the training and validation sets (1) are balanced with respect to the two classes (2) are such that if one
has an instance, the other never has its augmented versions (thus preventing data leakage) (3) never exceed a total of 200
instances. Table 1 reports some specifications for the six datasets, including the length of the time series (N), the number
of positive and negative instances, and the number of instances in the training and validation sets at each repetition. Five
models were compared: a (pure) temporal decision tree, a neural network classifier, and a leaf-, a split-, and a root-level
hybrid; for a fair comparison, the classifier and the hybrids are based on the same neural technology, and, where possible,
on the same architecture. After an exploratory analysis in which different tree-pruning conditions were tested, Shannon
Entropy as information metric and a minimum entropy gain of 0.01 were fixed for the pure tree and the trees in the
three hybrids. Additionally, a minimum number of instances at the leaf nodes of 2 was chosen for the pure tree and for
the split-level hybrid, of 8 for the leaf-level hybrid, and of 16 for the root-level hybrid. For all tree models, except for the
split-level hybrid, where both neural and non-neural features were used, the feature extraction functions are fixed to be
16

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
Table 1
Specifications for the six binary classification tasks from the dataset in
use [18]. For each dataset, the length of the series in the original dataset
(Norig), the length of the series after the moving average filter (N), the
number of positive and negative instances is shown, together with the
total number of instances, and the number of training and validation
instances used for cross-validation. Recall that n = 15 for all datasets.

Task Norig N # pos # neg # tot # train/val

Co
ug

h C1 59 7 202 223 425 158/40
C2 59 7 53 187 240 84/22
C3 51 6 53 55 108 64/16

Br
ea

th B1 604 9 570 618 1188 160/40
B2 366 5 182 482 664 158/40
B3 361 5 182 77 259 80/20

Table 2
Search space for the prior hyperparameter search the three architectures used
in the leaf-, split-, and root-level hybrid models. The optimal hyperparametriza-
tion found by random search is marked in bold, and its average validation accu-
racy/MAE is reported. For the sequence-to-sequence models the measure is com-
puted on the normalized values.

CLS (leaf-level) S2S (split-level) S2S (root-level)
Hidden size 32,64,128,256 64,128,256,512 32,64,128,256
Dropout rate 0.5,0.6,0.7 0.5,0.6,0.7 0.5,0.6,0.7
Epochs 100,200 100,200 100,200
Batch size 16,32,64,128,256 32,64,128,256 32,64,128,256
Patience 20,50,100 20,50,100 20,50,100
Code size – 1,2,4,8 2,4,8,16
Learning rate 10−5,10−4,10−3 10−5,10−4,10−3 10−5,10−4,10−3

Val. ACC (%) 63.0 – –
Val. MAE – 0.028 0.2956

F = {min, max}, and the first split is forced to use a decision of the kind 〈G〉, inducing the learning of global leaf- and
class-formulas.

A GRU-based network classifier (referred to as CLS) was used for the leaf-level hybrid, and GRU-based sequence-to-
sequence networks (referred to as S2Ss) [69,70] were used as feature extractors for the root-level and split-level hybrid.
The CLS architecture consists of three GRU layers, plus the final linear layer for producing a classification output. The S2S
architecture is an autoencoder composed of three GRU layers for both the encoder and the decoder. In all cases, each GRU
layer is followed by a dropout layer [71], for counteracting overfitting. All architectures were trained using batch gradient
descent, optimizing the cross-entropy and the mean average error (MAE) for the cases of classifiers and autoencoders,
respectively. Note that, given that the architecture of the underlying networks is comparable, the three hybrids are, in
principle, comparable.

Neural networks were trained via the AdamW [67] algorithm. For each of the three hybrids, a prior hyperparameter
search and selection was performed using the dataset for C1. This was done via a randomized, balanced cross-validation
with 5 repetitions, after selecting a balanced test set (60 instances) for validating the final hyperparametrization. For each
repetition, the models were trained and validated on balanced sets of 293 and 72 instances, respectively; the validation
sets were used for the early-stopping condition, which stops the training when the validation loss does not decrease for a
specified number of epochs (this hyperparameter, in neural network terminology, is referred to as patience). Other parame-
ters included in the search were the learning rate, dropout rate, and the hidden size of the hidden layers of each GRU layer.
For S2S models, the size of the hidden state (code size) was also included in the search. Ultimately, each of the three best
hyperparametrizations was found by 50 tries of random search, optimizing the average validation accuracy (ACC) for the
case of CLS models and MAE for the case of S2S models. Table 2 reports, for the three cases, the parameter space, the best
hyperparametrization across the 50 tries, and its average accuracy or MAE. For the case of the leaf-level hybrid, a similar
search was conducted on the hyperparametrizations for the hierarchical fine-tuning policy; several leaf-level hybrid models
were trained with different hyperparametrizations and, ultimately, a batch size equal to 8, a number of fine-tuning epochs
equal to 20, a learning rate equal to 0.0001, and no early-stopping condition were fixed. Since leaf hybridization generalizes
neural network classifiers, the same hyperparametrization found for the leaf-level hybrid was used for the neural network
classifier.

All experiments were done using open-source Julia packages: Flux.jl [72] for training neural networks, ModalDecision-
Trees.jl [73] for training decision trees, and Hyperopt.jl [74] for the hyperparameter search.

5.1.3. Results and discussion
Table 3 gives an overview of the cross-validation results for the five models. The results are given in terms of average

and standard deviations across the 10 repetitions of a measure of performance and a measure of symbolic complexity of
17

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
Table 3
Average cross-validation accuracy (percentage points) and number of leaves (i.e. classification rules) for the models in comparison. The table
reports the means and standard deviations over 10 repetitions and, for each task, the average accuracies of the hybrid models that perform
better than the neural classifier (CLS) and the pure temporal decision tree (TDT) are shown in bold and underlined, respectively. For the case
of the root-level hybrid, the number of rules reported is the total number of rules in the underlying trees.

Model C1 C2 C3 B1 B2 B3 Average
ACC L ACC L ACC L ACC L ACC L ACC L ACC L

TDT avg 66.5 10.0 92.7 2.1 93.8 2.9 64.5 15.6 81.0 7.4 87.5 4.0 81.0 7.0
std 8.6 4.2 7.2 0.3 7.8 1.2 7.3 6.1 8.1 1.9 8.6 0.7 7.9 2.4

H
ybrids

Leaf-level avg 55.0 4.3 55.0 2.0 71.2 2.4 53.6 5.3 56.5 6.0 64.5 3.1 59.3 3.8
std 3.3 1.3 5.1 0.0 11.4 0.8 6.2 2.2 3.8 1.9 7.4 1.1 6.2 1.2

Split-level avg 66.5 9.0 89.9 3.6 94.8 2.7 64.4 10.8 81.3 4.5 90.0 4.6 81.2 5.9
std 7.4 4.4 10.8 2.1 5.3 0.8 6.9 8.2 9.2 2.6 5.8 0.8 7.6 3.2

Root-level avg 69.1 44.9 91.6 5.4 93.8 22.0 68.6 55.2 80.5 16.0 84.6 7.0 81.4 25.1
std 9.4 7.0 7.7 1.8 9.0 3.2 10.2 13.7 7.9 2.8 7.4 2.8 8.6 5.2

CLS avg 63.5 – 66.1 – 85.3 – 56.6 – 67.5 – 75.8 – 69.1 –
std 7.8 – 5.9 – 4.2 – 3.7 – 4.4 – 7.6 – 5.6 –

the model. The performance is evaluated via classification accuracy (ACC), while the complexity is evaluated via the number
of classification rules (which is equivalent to the number of tree leaves), denoted by L.

Both with cough and breath samples, all models scored a higher average accuracy for task 2 and task 3, than task 1, which
seems to enclose the hardest problem. Furthermore, the accuracy for each cough task, with respect to the corresponding
breath task, is higher by 2 to 11.7 percentage points. Across all tasks, the leaf-level hybrid is the one that performs worst
(average accuracy 59.3%), followed by the pure neural network classifier (average accuracy 69.1%). The three remaining
models, namely, the pure temporal tree, the split-level hybrid and the root-level hybrid have similar accuracies (81.0%–81.4%
on average across the six tasks). In all cases, both hybrids outperform the neural classifier, and in six out of twelve cases
they yield a higher average accuracy with respect to the temporal decision tree; the remaining cases are evenly distributed
across the six tasks, with the exception of C2, where the pure temporal tree have higher accuracy than all other models.
Of the two hybrids, the root-level hybrid appears to lead to larger improvements, bringing the average accuracy from 66.5%
to 69.1% for C1, and from 64.5% to 68.6% for B1. Note how for the six tasks the pure tree outperforms the neural network
classifier, with accuracy gaps ranging from 3.0 (C1) to 26.6 (C2) percentage points. In principle, this is likely to put hybrid
models at a disadvantage, when compared to the pure tree, but, overall, the results show that in five out of eighteen cases,
hybridizing a tree with a weaker neural technology still brings an improvement.

Of the three hybridization schemes, the leaf-level hybrid is the one that appear to consistently cause a degradation
in performances; this could be due to the small size of the datasets used for initial training and/or fine-tuning, and an
underlying difficulty of calibrating the parameters for the initial training and those for the fine-tuning stages. Note that a
small size of the datasets probably does not affect as much the performances of the other two hybrids. In fact, they do
not require a fine-tuning stage, and, in particular, the split-level hybrid augments the number of instances by as much
as N · (N − 1)/2 by considering all sub-intervals. Leaf hybridization is also the one of the three schemes with stronger
similarities with methods in the existing literature [16]; however, these methods use, at the leaves, models that require
less training data than GRUs (e.g., MLP or linear regression). This suggests that a network with fewer GRU layers, or with a
simpler RNN technology could yield better results. Finally, the fact that split hybridization performs better than the other
schemes could be due to the nature of temporal decision trees, that allow the exploration of every interval of every instance,
as well as the learning algorithm allowing training on a larger dataset.

As for the symbolic complexity of the models, leaf-level hybridization provides models that are in five out of six cases
smaller than the purely symbolic counterpart; split-level hybridization provides models that are in four out of six cases
smaller than their purely symbolic counterpart. As the root-level hybrids have four trees, they always yield larger models in
terms of number of leaves with respect to temporal trees; however, in four out of six cases the average number of leaves
across the four trees is smaller than that of temporal trees and, in fact, root-level hybrids appear to hold the smallest trees.
This trend is consistent with the values chosen for the minimum number of instances at the tree leaves, which, recall, are
8, 2, 16, 2 for the leaf-level hybrid, split-level hybrid, root-level hybrid, and pure tree, respectively.

Compared with the leaf- and root-level hybridization schemes, the split-level hybridization scheme appears to capture a
good trade-off between performance gain and symbolic complexity. To further investigate this trade-off, we now compare
rules extracted via the purely symbolic approach, and split-level hybridization scheme. Recall from Table 1, that tasks C1,
B1, and B2 are the ones with the highest number of instances, and that their (balanced) validation sets count 20 instances
for each of the two classes pos and neg, respectively. We, first, compared trees trained on these three tasks, and assessed
how neural features would only appear at lower levels of the trees.

Table 4 reports a few pairs of purely symbolic and neuro-symbolic rules extracted from trees trained on the three tasks,
along with their validation confidences and supports. Each pair shows an example where, under the same conditions, the
learning of a pure tree incurred in stopping criteria, whereas the learning of a split-level hybrid was able to further refine
a rule using neural features from autoencoders. As a result, compared with their purely symbolic counterparts, hybrid rules
have higher confidences, but lower supports. With the selected rules, the degradation in terms of support ranges between
18

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
Table 4
Pairs of purely symbolic and split-level hybrid rules extracted from trees trained on tasks C1, B1, and
B2. For each rule, confidence (conf) and support (supp) are shown.

Task Rule conf supp
C1 [G](min(A7) < 1.06 × 104) ∧ 〈G〉(min(A6) ≥ 3.92 × 102) ⇒ neg 0.56 0.40

[G](min(A7) < 1.06 × 104) ∧ 〈G〉(min(A6) ≥ 3.92 × 102)∧ 0.75 0.30
[G](min(A6) ≥ 3.92 × 102 → (

−→υ 10(A10) < 3.72 × 10−4∧
〈O〉(max(A9) ≥ 4.22 × 104))) ⇒ neg

C1 [G](min(A9) < 8.35 × 104) ⇒ neg 0.79 0.48

[G](min(A9) < 8.35 × 104) ∧ [G](−→υ 7(A7) ≥ −5.67 × 10−5)∧ 1.00 0.30
〈G〉(min(A7) ≥ 2.54 × 103) ⇒ neg

B1 [G](min(A8) < 5.40 × 103) ⇒ neg 0.62 0.60

[G](min(A8) < 5.40 × 103 ∧ −→υ 13(A13) ≥ 3.54 × 10−5∧ 0.73 0.38
min(A11) < 8.72 × 104) ⇒ neg

B1 〈G〉(min(A8) ≥ 1.88 × 103 ∧ min(A4) < 1.05 × 103) ⇒ pos 0.64 0.62

〈G〉(min(A8) ≥ 1.88 × 103 ∧ min(A4) < 1.05 × 103)∧ 0.89 0.22
[G](−→υ 4(A4) ≥ −6.04 × 10−5)∧
[G]((min(A8) ≥ 1.88 × 103 ∧ min(A4) < 1.05 × 103) →
[L](−→υ 14(A14) < 5.62 × 10−5)∧
[D](−→υ 15(A15) < −6.30 × 10−5)) ⇒ pos

B2 [G](min(A9) < 2.87 × 104)∧ 0.88 0.20
〈G〉(min(A4) ≥ 1.66 ∧ min(A11) ≥ 3.52 × 104) ⇒ neg

[G](min(A9) < 2.87 × 104)∧ 1.00 0.18
〈G〉(min(A4) ≥ 1.66 ∧ min(A11) ≥ 3.52 × 104)∧
[G]((min(A4) ≥ 1.66 ∧ min(A11) ≥ 3.52 × 104) →−→υ 3(A3) ≥ 2.81 × 10−4) ⇒ neg

Table 5
Split-level hybrid rules extracted from trees trained on the eight tasks of Respiratory Sound Database. For each rule, confidence
(conf) and support (supp) are shown.

Task Rule conf supp
CO/P 〈G〉(min(A9) ≥ 6.18 × 102) ⇒ neg 0.95 0.48

[G](min(A9) < 6.18 × 102 ∧ min(A5) < 2.48 × 102) ⇒ pos 0.91 0.28

CO/T 〈G〉(min(A6) ≥ 2.62 × 102 ∧ 〈L〉−→υ 14(A14) ≥ −2.59 × 10−2) ⇒ neg 0.91 0.42
[G](min(A6) < 2.62 × 102 ∧ min(A13) < 3.42 × 104 ∧ −→υ 3(A3) ≥ 5.84 × 10−3) ⇒ pos 0.92 0.46

UR/P 〈G〉(min(A11) ≥ 7.96 × 101 ∧ min(A15) < 8.17 × 102 ∧ −→υ 3(A3) ≥ 1.04 × 10−1) ⇒ neg 0.83 0.43
〈G〉(min(A11) ≥ 7.96 × 101)∧ 0.75 0.43
[G](min(A11) < 7.96 × 101 → (min(A15) ≥ 8.17 × 102 ∧ 〈G〉−→υ 5(A5) ≥ 3.30 × 10−2)) ⇒ pos

UR/T 〈G〉(min(A1) ≥ 3.04 × 102 ∧ −→υ 1(A1) < 1.52 × 10−2) ⇒ pos 0.83 0.67
[G](min(A1) < 3.04 × 102 ∧ −→υ 13(A13) ≥ 2.55 × 10−2) ∧ 〈G〉min(A9) ≥ 5.34 × 103 ⇒ neg 1.00 0.33

BR/P 〈G〉(min(A10) ≥ 3.14 × 102) ⇒ neg 1.00 0.50
[G](min(A10) < 3.14 × 102) ⇒ pos 1.00 0.50

BR/T 〈G〉(min(A5) ≥ 3.42 × 102) ⇒ neg 1.00 0.50
[G](min(A5) < 3.42 × 102) ⇒ pos 1.00 0.50

PN/P 〈G〉(min(A3) ≥ 3.80 × 102) ⇒ pos 1.00 0.18
[G](min(A3) < 3.80 × 102 ∧ −→υ 8(A8) ≥ 4.48 × 10−3 ∧ min(A1) < 5.79 × 102)∧ 0.77 0.34
〈G〉(min(A3) ≥ 2.15 × 102 ∧ 〈O〉max(A5) < 7.08 × 101) ⇒ pos
[G](min(A3) < 3.80 × 102 ∧ −→υ 8(A8) ≥ 4.48 × 10−3 ∧ min(A1) < 5.79 × 102)∧ 0.82 0.29
〈G〉(min(A3) ≥ 2.15 × 102) ∧ [G](min(A3) ≥ 2.15 × 102 → [O](max(A5) ≥ 7.08 × 101)) ⇒ neg

PN/T 〈G〉(min(A12) ≥ 1.74 × 103) ⇒ yes 0.80 0.38
[G](min(A12) < 1.74 × 103 ∧ −→υ 2(A2) ≥ 1.20 × 10−3) ∧ 〈G〉(min(A14) ≥ 1.81 × 102) ⇒ neg 0.77 0.50

2 (B2) and 40 (B1, second pair) percentage points, with an average of 18.40 percentage points. In turn, the gain in terms
of confidence ranges between 11 (B2, first pair) and 25 (B2, second pair) percentage points, and with an average of 20
percentage points. One possible reason for this is that by learning neuro-symbolic rules we have the chance of exploring
the solution space in more detail before reaching a stopping condition.
19

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
5.2. Experiment 2: rule extraction for respiratory diseases

As a final set of experiments, we tested the same approach with the same parametrization on a different, similar dataset
for diagnosing various respiratory diseases. Taking advantage from the previous experiment, we focused on split hybridiza-
tion, and we limited ourselves to rule extraction.

5.2.1. Data and experimental setting
The dataset is the Respiratory Sound Database [25], which contains audio recordings of respiratory cycles from healthy

and non-healthy subjects. Similarly to before, we designed a set of eight binary classification tasks by varying the respiratory
disease of interest in: COPD (CO), URTI (UR), Bronchiectasis (BR), and Pneumonia (PN); and the position of the audio sensor
in: Trachea (T) and Posterior (P). Using the provided labels, we segmented the recordings into recordings containing single
respiratory cycles; the number of instances in the resulting eight datasets ranges between 52 and 200, with an average of
124.75. We trained trees using the same randomized, balanced cross-validation setting, but this time with 4 repetitions; as
a result, the test sets count a number of instances between 10 and 40, with an average of 25.

5.2.2. Results
The purpose of this experiment is not that of obtaining classification models with the best possible absolute perfor-

mances. The obtained models, however, are relatively competitive: the resulting average accuracies were 68.3% for UR, 94.0%
for BR, 87.5% for CO, and 82.6% for PN. On the other hand, several useful rules could be extracted from the learned models;
they are reported in Table 5.

6. Conclusions

In this paper we have presented a method for multivariate time series classification that combines the high generalization
capacity of trained neural networks with the symbolic nature of temporal decision trees. Our experiments showed promising
results, and allowed us to draw some initial conclusions. The hybridization between temporal decision trees and neural
networks seems quite natural and elegant, by considering the different type of nodes in decision trees. The best results
seem to arise when the hybridization scheme blends the symbolic and neural computation in the root and split/internal
nodes. Moreover, the root-level hybridization technique is similar to random forests, where the individual decisions are
weighted by a final decision making policy; in our case, such decision policy is governed by a neural network at the root
node of a (temporal) decision tree, whereas in random forests, the policy is at the leaf nodes. As a final commentary, this
work could represent a first step towards using temporal decision trees for explaining or approximating recurrent neural
network classifiers.

CRediT authorship contribution statement

Giovanni Pagliarini: Writing – original draft, Validation, Investigation, Data curation. Simone Scaboro: Investigation,
Data curation. Giuseppe Serra: Supervision. Guido Sciavicco: Writing – review & editing, Writing – original draft, Super-
vision, Methodology, Investigation. Ionel Eduard Stan: Writing – review & editing, Writing – original draft, Supervision,
Methodology, Investigation, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com-
peting interests: Ionel Eduard Stan reports financial support was provided by Francesco Severi National Institute of Higher
Mathematics National Group of Scientific Calculations. Ionel Eduard Stan reports financial support was provided by Univer-
sity of Ferrara. If there are other authors, they declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research has been partially funded by the FIRD project Modal Geometric Symbolic Learning (University of Ferrara),
the Italian Ministry of University and Research through PNRR - M4C2 - Investimento 1.3 (Decreto Direttoriale MUR n. 341
del 15/03/2022), Partenariato Esteso PE00000013 - “FAIR - Future Artificial Intelligence Research” - Spoke 8 “Pervasive AI”,
funded by the European Union under the NextGeneration EU programme”, and the Gruppo Nazionale Calcolo Scientifico-
Istituto Nazionale di Alta Matematica (INDAM-GNCS) project Symbolic and Numerical Analysis of Cyberphysical Systems, CUP
code E53C22001930001. Guido Sciavicco and Ionel Eduard Stan are GNCS-INdAM members.

References

[1] A.P. Ruiz, M. Flynn, J. Large, M. Middlehurst, A.J. Bagnall, The great multivariate time series classification bake off: a review and experimental evaluation
of recent algorithmic advances, Data Min. Knowl. Discov. 35 (2) (2021) 401–449.
20

http://refhub.elsevier.com/S0890-5401(24)00074-9/bib5ED05E1FEDA7BBECDF00AA502E33624Cs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib5ED05E1FEDA7BBECDF00AA502E33624Cs1

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
[2] R. Shwartz-Ziv, A. Armon, Tabular data: deep learning is not all you need, Inf. Fusion 81 (2022) 84–90.
[3] L. Grinsztajn, E. Oyallon, G. Varoquaux, Why do tree-based models still outperform deep learning on typical tabular data?, Adv. Neural Inf. Process.

Syst. 35 (2022) 507–520.
[4] B. Goodman, S. Flaxman, European Union regulations on algorithmic decision-making and a “right to explanation”, AI Mag. 38 (3) (2017) 50–57.
[5] A.S. d’Avila Garcez, M. Gori, L.C. Lamb, L. Serafini, M. Spranger, S.N. Tran, Neural-symbolic computing: an effective methodology for principled integra-

tion of machine learning and reasoning, J. Appl. Log. 6 (4) (2019) 611–632.
[6] A.S. d’Avila Garcez, L.C. Lamb, D.M. Gabbay, Neural-Symbolic Cognitive Reasoning, Cognitive Technologies, Springer, 2009.
[7] M. Minsky, Logical versus analogical or symbolic versus connectionist or neat versus scruffy, AI Mag. 12 (2) (1991) 34–51.
[8] G. Sciavicco, I.E. Stan, Knowledge extraction with interval temporal logic decision trees, in: Proc. of the 27th International Symposium on Temporal

Representation and Reasoning (TIME), in: LIPIcs, vol. 178, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020, 9.
[9] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees, Wadsworth Publishing Company, 1984.

[10] F. Manzella, G. Pagliarini, G. Sciavicco, I.E. Stan, Interval temporal random forests with an application to COVID-19 diagnosis, in: Proc. of the 28th
International Symposium on Temporal Representation and Reasoning (TIME), in: LIPIcs, vol. 206, Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021, 7.

[11] F. Manzella, G. Pagliarini, G. Sciavicco, I.E. Stan, The voice of COVID-19: breath and cough recording classification with temporal decision trees and
random forests, Artif. Intell. Med. 137 (2023) 102486.

[12] M. Coccagna, F. Manzella, S. Mazzacane, G. Pagliarini, G. Sciavicco, Statistical and symbolic neuroaesthetics rules extraction from EEG signals, in: Proc. of
the 9th International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC), in: Lecture Notes in Computer Science,
vol. 13258, Springer, 2022, pp. 536–546.

[13] G. Bechini, E. Losi, L. Manservigi, G. Pagliarini, G. Sciavicco, I.E. Stan, M. Venturini, Statistical rule extraction for gas turbine trip prediction, J. Eng. Gas
Turbines Power 145 (2023) 1–10.

[14] K. Cho, B. van Merriënboer, D. Bahdanau, Y. Bengio, On the properties of neural machine translation: encoder–decoder approaches, in: Proc. of the
Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST), Association for Computational Linguistics, 2014, pp. 103–111.

[15] H. Guo, S.B. Gelfand, Classification trees with neural network feature extraction, IEEE Trans. Neural Netw. 3 (6) (1992) 923–933.
[16] Z. Zhou, Z. Chen, Hybrid decision tree, Knowl.-Based Syst. 15 (8) (2002) 515–528.
[17] A. Wan, L. Dunlap, D. Ho, J. Yin, S. Lee, S. Petryk, S.A. Bargal, J.E. Gonzalez, NBDT: neural-backed decision tree, in: Proc. of the 9th International

Conference on Learning Representations (ICLR), 2021, pp. 1–12.
[18] C. Brown, J. Chauhan, A. Grammenos, J. Han, A. Hasthanasombat, D. Spathis, T. Xia, P. Cicuta, C. Mascolo, Exploring automatic diagnosis of COVID-19

from crowdsourced respiratory sound data, in: Proc. of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), 2020, pp. 3474–3484.

[19] J. Shuja, E. Alanazi, W. Alasmary, A. Alashaikh, COVID-19 open source data sets: a comprehensive survey, Appl. Intell. 51 (3) (2021) 1296–1325.
[20] A. Hassan, I. Shahin, M.B. Alsabek, COVID-19 detection system using recurrent neural networks, in: Proc. of the 2020 International Conference on

Communications, Computing, Cybersecurity, and Informatics (CCCI), 2020, pp. 1–5.
[21] M. Pahar, M. Klopper, R. Warren, T. Niesler, COVID-19 cough classification using machine learning and global smartphone recordings, Comput. Biol.

Med. 135 (2021) 104572.
[22] G. Deshpande, B.W. Schuller, The DiCOVA 2021 challenge – an encoder-decoder approach for COVID-19 recognition from coughing audio, in: Proc. of

the 22nd Annual Conference of the International Speech Communication Association (INTERSPEECH), 2021, pp. 931–935.
[23] M. Alkhodari, A.H. Khandoker, Detection of COVID-19 in smartphone-based breathing recordings: a pre-screening deep learning tool, PLoS ONE 17 (1)

(2022) 1–25.
[24] A.B. Nassif, I. Shahin, M. Bader, A. Hassan, N. Werghi, COVID-19 detection systems using deep-learning algorithms based on speech and image data,

Mathematics 10 (4) (2022) 564.
[25] B.M. Rocha, D. Filos, L. Mendes, I. Vogiatzis, E. Perantoni, E. Kaimakamis, P. Natsiavas, A. Oliveira, C. Jácome, A. Marques, A respiratory sound database

for the development of automated classification, in: Proc. of the 3rd Precision Medicine Powered by pHealth and Connected Health (ICBHI), Springer,
2018, pp. 33–37.

[26] L. Atlas, R. Cole, Y. Muthusamy, A. Lippman, J. Connor, D. Park, M. El-Sharkawai, R. Marks, A performance comparison of trained multilayer perceptrons
and trained classification trees, in: Proc. of the IEEE International Conference on Systems, Man and Cybernetics (SMC), vol. 78, 1990, pp. 1614–1619.

[27] J.W. Shavlik, R.J. Mooney, G.G. Towell, Symbolic and neural learning algorithms: an experimental comparison, Mach. Learn. 6 (1991) 111–143.
[28] I.K. Sethi, Entropy nets: from decision trees to neural networks, Proc. IEEE 78 (10) (1990) 1605–1613.
[29] R.P. Brent, Fast training algorithms for multilayer neural nets, IEEE Trans. Neural Netw. 2 (3) (1991) 346–354.
[30] I. Ivanova, M. Kubat, Initialization of neural networks by means of decision trees, Knowl.-Based Syst. 8 (6) (1995) 333–344.
[31] R. Setiono, W.K. Leow, On mapping decision trees and neural networks, Knowl.-Based Syst. 12 (3) (1999) 95–99.
[32] M. Kubat, Decision trees can initialize radial-basis function networks, IEEE Trans. Neural Netw. 9 (5) (1998) 813–821.
[33] M.W. Craven, J.W. Shavlik, Extracting tree-structured representations of trained networks, in: Proc. of the 8th Advances in Neural Information Processing

Systems (NIPS), 1995, pp. 24–30.
[34] G.G. Towell, J.W. Shavlik, Extracting refined rules from knowledge-based neural networks, Mach. Learn. 13 (1993) 71–101.
[35] D. Dancey, D. McLean, Z. Bandar, Decision tree extraction from trained neural networks, in: Proc. of the 7th International Florida Artificial Intelligence

Research Society Conference (FLAIRS), 2004, pp. 515–519.
[36] R. Krishnan, G. Sivakumar, P. Bhattacharya, Extracting decision trees from trained neural networks, Pattern Recognit. 32 (12) (1999) 1999–2009.
[37] G.P.J. Schmitz, C. Aldrich, F.S. Gouws, ANN-DT: an algorithm for extraction of decision trees from artificial neural networks, IEEE Trans. Neural Netw.

10 (6) (1999) 1392–1401.
[38] Z. Zhou, Y. Jiang, NeC4.5: neural ensemble based C4.5, IEEE Trans. Knowl. Data Eng. 16 (6) (2004) 770–773.
[39] R. Setiono, H. Liu, A connectionist approach to generating oblique decision trees, IEEE Trans. Syst. Man Cybern., Part B, Cybern. 29 (3) (1999) 440–444.
[40] V.N. Murthy, V. Singh, T. Chen, R. Manmatha, D. Comaniciu, Deep decision network for multi-class image classification, in: Proc. of the Conference on

Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2240–2248.
[41] M. Längkvist, L. Karlsson, A. Loutfi, A review of unsupervised feature learning and deep learning for time-series modeling, Pattern Recognit. Lett. 42

(2014) 11–24.
[42] A.J. Bagnall, J. Lines, A. Bostrom, J. Large, E.J. Keogh, The great time series classification bake off: a review and experimental evaluation of recent

algorithmic advances, Data Min. Knowl. Discov. 31 (3) (2017) 606–660.
[43] H.I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, P. Muller, Deep learning for time series classification: a review, Data Min. Knowl. Discov. 33 (4) (2019)

917–963.
[44] V. Goranko, A. Montanari, G. Sciavicco, A road map of interval temporal logics and duration calculi, J. Appl. Non-Class. Log. 14 (1–2) (2004) 9–54.
[45] J.Y. Halpern, Y. Shoham, A propositional modal logic of time intervals, J. ACM 38 (4) (1991) 935–962.
[46] D. Bresolin, D. Della Monica, A. Montanari, P. Sala, G. Sciavicco, Interval temporal logics over strongly discrete linear orders: expressiveness and

complexity, Theor. Comput. Sci. 560 (2014) 269–291.
21

http://refhub.elsevier.com/S0890-5401(24)00074-9/bibE8B6CB3457D7AAD94900FC4DE5D9BD18s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib079543ABE425C3BA9967695EBECC150Cs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib079543ABE425C3BA9967695EBECC150Cs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib6FB4903D2B4744563B1FD209A40A9C26s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibB9D71089A0DE81B4BB44B912E5AA2D53s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibB9D71089A0DE81B4BB44B912E5AA2D53s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib3BB32A7B01D83B839F89548F2D99C54Bs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib6FEB76CDA2CBDDE7E728E7BA70B4D2CAs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibA8A5503BFAB6572B4689C872A716E454s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibA8A5503BFAB6572B4689C872A716E454s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibBD7E349360DB366CB712D010BCD0FE0Fs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib6D4B73E930B30C100C766E60624279F4s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib6D4B73E930B30C100C766E60624279F4s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib6D4B73E930B30C100C766E60624279F4s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib1B8D0C691DE77A5C76D88CF7C12F573Es1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib1B8D0C691DE77A5C76D88CF7C12F573Es1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibB523C000A9174C6BA289661854046B44s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibB523C000A9174C6BA289661854046B44s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibB523C000A9174C6BA289661854046B44s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib1A2D7C80190EF949268C5CACDDFC2A2Bs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib1A2D7C80190EF949268C5CACDDFC2A2Bs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibBE03BD31FA29F124F61C10DE797D74BAs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibBE03BD31FA29F124F61C10DE797D74BAs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib9796B79703825897F4E0E86D0D9E5AAFs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib832CB0071B7D8D7005BD52259627E207s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib8CE3799F942FCF98A4B4E9B600E7D643s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib8CE3799F942FCF98A4B4E9B600E7D643s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib480FF0DC7049D603EF29ED1773279578s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib480FF0DC7049D603EF29ED1773279578s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib480FF0DC7049D603EF29ED1773279578s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibC9CEB4CA0B6259FDA0147B070A6FE322s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib492D0A75B93484953D7DAE59589FA5EBs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib492D0A75B93484953D7DAE59589FA5EBs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib513DB89FC076BF4C9AEA2C5DD6986FC0s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib513DB89FC076BF4C9AEA2C5DD6986FC0s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib359B488135894653BE2D6961EBA7D5E9s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib359B488135894653BE2D6961EBA7D5E9s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib0BF6D2232E22CEF4D2DDC130BF7D0AE5s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib0BF6D2232E22CEF4D2DDC130BF7D0AE5s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib08168EA12D74311D37C3F29BD37C2D6Fs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib08168EA12D74311D37C3F29BD37C2D6Fs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibB1E22A5808358A88A1C8F90228C5BFA3s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibB1E22A5808358A88A1C8F90228C5BFA3s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibB1E22A5808358A88A1C8F90228C5BFA3s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib2CB51169C219F6ECFC3E3FC6F6CBBEFDs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib2CB51169C219F6ECFC3E3FC6F6CBBEFDs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib492F911B387B9EEE884D868EBCD7AECDs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib22DC46A29506B300EE44A39343702B3Cs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib30A977A5453A6A268D79A77CAAF14322s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib5692B6B31A770C78A0C42CBE751C92E5s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib979FBF761D6B48159010F5B8797EF9E5s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib7C117B09D1BB8E5D15C279FC54AA19BDs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibE2DE08CBE6081318A45F79100E615613s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibE2DE08CBE6081318A45F79100E615613s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibAC83719A57F42ADDB3FF704441D6B802s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibA5A5942099AE263CE71183AC31A1135Es1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibA5A5942099AE263CE71183AC31A1135Es1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibF25C850ED8BB4421F15F3E2A6A1F8CD7s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib53BC40F6FFE0F09CFA637783AC2C137Es1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib53BC40F6FFE0F09CFA637783AC2C137Es1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib4C3D0C7E32EDE331CD1C65C1C309A07Cs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib58F92F15B10A7EA6CC8549A0F28B3E75s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibB94D7D4B1F0240C4E4655A96DFF8EB04s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibB94D7D4B1F0240C4E4655A96DFF8EB04s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib5A8E1BD4531CB07BE3AA6E91029206DDs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib5A8E1BD4531CB07BE3AA6E91029206DDs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibCCC43303DE3CDFAEFFE6DCA9CA2D42D0s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibCCC43303DE3CDFAEFFE6DCA9CA2D42D0s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibCAACAB353C84092498EF13015B762077s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibCAACAB353C84092498EF13015B762077s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibC084208C3BF1D3D725E218D00DEBD864s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib55CD450DFEDE8039BE16CAC21AA5FB6Ds1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib38A9EE9966686AE3B4A40474B6221724s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib38A9EE9966686AE3B4A40474B6221724s1

G. Pagliarini, S. Scaboro, G. Serra et al. Information and Computation 301 (2024) 105209
[47] D. Bresolin, D.D. Monica, A. Montanari, P. Sala, G. Sciavicco, Decidability and complexity of the fragments of the modal logic of Allen’s relations over
the rationals, Inf. Comput. 266 (2019) 97–125.

[48] J. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26 (11) (1983) 832–843.
[49] A. Montanari, G. Sciavicco, N. Vitacolonna, Decidability of interval temporal logics over split-frames via granularity, in: Proc. of the 8th European

Conference on Logics in Artificial Intelligence (ECAI), in: Lecture Notes in Computer Science, vol. 2424, Springer, 2002, pp. 259–270.
[50] L. Aceto, D. Della Monica, V. Goranko, A. Ingólfsdóttir, A. Montanari, G. Sciavicco, A complete classification of the expressiveness of interval logics of

Allen’s relations: the general and the dense cases, Acta Inform. 53 (3) (2016) 207–246.
[51] D. Bresolin, A. Kurucz, E. Muñoz-Velasco, V. Ryzhikov, G. Sciavicco, M. Zakharyaschev, Horn fragments of the Halpern-Shoham interval temporal logic,

ACM Trans. Comput. Log. 18 (3) (2017) 22:1–22:39.
[52] E. Muñoz-Velasco, M. Pelegrín-García, P. Sala, G. Sciavicco, I.E. Stan, On coarser interval temporal logics, Artif. Intell. 266 (2019) 1–26.
[53] G. Bombara, C.I. Vasile, F. Penedo, H. Yasuoka, C. Belta, A decision tree approach to data classification using signal temporal logic, in: A. Abate, G.E.

Fainekos (Eds.), Proc. of the 19th International Conference on Hybrid Systems: Computation and Control, ACM, 2016, pp. 1–10.
[54] D. Neider, I. Gavran, Learning linear temporal properties, in: N.S. Bjørner, A. Gurfinkel (Eds.), Proc. of Formal Methods in Computer Aided Design

(FMCAD), IEEE, 2018, pp. 1–10.
[55] C. Lubba, S. Sethi, P. Knaute, S. Schultz, B. Fulcher, N. Jones, catch22: CAnonical Time-series CHaracteristics - selected through highly comparative

time-series analysis, Data Min. Knowl. Discov. 33 (6) (2019) 1821–1852.
[56] L. Hyafil, R.L. Rivest, Constructing optimal binary decision trees is NP-complete, Inf. Process. Lett. 5 (1) (1976) 15–17.
[57] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.
[58] D. Della Monica, G. Pagliarini, G. Sciavicco, I.E. Stan, Decision trees with a modal flavor, in: Proc. of the 21st International Conference of the Italian

Association for Artificial Intelligence (AIxIA), in: Lecture Notes in Computer Science, vol. 13796, Springer, 2022, pp. 47–59.
[59] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (3) (1948) 379–423.
[60] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140.
[61] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[62] J.H. Friedman, B.E. Popescu, Predictive learning via rule ensembles, Ann. Appl. Stat. 2 (3) (2008).
[63] N. Meinshausen, Node harvest, Ann. Appl. Stat. 4 (4) (2010).
[64] H. Deng, Interpreting tree ensembles with inTrees, Int. J. Data Sci. Anal. 7 (2019) 277–289.
[65] I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural networks, in: Proc. of the 27th Advances in Neural Information Processing

Systems (NIPS), 2014, pp. 3104–3112.
[66] D. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Y. Bengio, Y. LeCun (Eds.), Proc. of the 3rd International Conference on Learning

Representations (ICLR), 2015, pp. 1–15.
[67] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, in: Proc. of the 7th International Conference on Learning Representations, ICLR 2019,

2019, pp. 1–8.
[68] S.B. Davis, P. Mermelstein, Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences, IEEE Trans.

Acoust. Speech Signal Process. 28 (4) (1980) 357–366.
[69] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder–decoder

for statistical machine translation, in: Proc. of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for
Computational Linguistics, Doha, Qatar, 2014, pp. 1724–1734.

[70] I. Sutskever, O. Vinyals, Q. Le, Sequence to sequence learning with neural networks, in: Proc. of the 27th Annual Conference on Advances in Neural
Information Processing Systems, 2014, pp. 3104–3112.

[71] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, J. Mach.
Learn. Res. 15 (56) (2014) 1929–1958.

[72] M. Innes, Flux: elegant machine learning with Julia, J. Open Sour. Softw. (2018).
[73] G. Pagliarini, F. Manzella, G. Sciavicco, I.E. Stan, ModalDecisionTrees.jl: interpretable models for native time-series & image classification, https://

github .com /aclai -lab /ModalDecisionTrees .jl, 2023.
[74] F. Bagge Carlson, Hyperopt. jl: hyperparameter optimization in Julia, https://github .com /bensadeghi /DecisionTree .jl, 2018.
22

http://refhub.elsevier.com/S0890-5401(24)00074-9/bibBF281E7D2A7C96033F7940E4AF76F564s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibBF281E7D2A7C96033F7940E4AF76F564s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib00DD1529A17C6E27326D5186E1838C52s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib48DDE30984CEEB7EE7851F31ADEF83F3s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib48DDE30984CEEB7EE7851F31ADEF83F3s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib3FD291C4EE2D8F7E95346862E3D7F4E9s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib3FD291C4EE2D8F7E95346862E3D7F4E9s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib8C48F0C9E02F543645EB7514E801F19Bs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib8C48F0C9E02F543645EB7514E801F19Bs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib16969CC79D39341F9D855ACD879C8579s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib244C7335F1D4B665B7F81169D72FE43As1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib244C7335F1D4B665B7F81169D72FE43As1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib42E341C7E1CAC510CD3AB969EC2A50EDs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib42E341C7E1CAC510CD3AB969EC2A50EDs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib1F4EDB9BD25C8005D1D77F48F37C6D20s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib1F4EDB9BD25C8005D1D77F48F37C6D20s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib39759A6B13FB265DEB864BFB8A27AF98s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib47C97B29873672D40439C14A1DE14954s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibFCBB65BF0345162F170D58469BCF3A02s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibFCBB65BF0345162F170D58469BCF3A02s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib2602CCD6A83DE091D6548435F15A4AD0s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib428A44A8FD763E16D13BD6A8BB533279s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibCDF8F3FE876AC6669C26DC936610046Fs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibB6906EE34260793ABC1B89E841E4EAF4s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibA8EBA52B93447652E8A66E85467C7B71s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib6EB25CAFD325FC432DE73FE0D2881A90s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib197BBB7CA73A133C754BF4D990D09429s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib197BBB7CA73A133C754BF4D990D09429s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib1D7C2923C1684726DC23D2901C4D8157s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib1D7C2923C1684726DC23D2901C4D8157s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibDC4B1F426302D3AFF61A0C79363CA8E3s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibDC4B1F426302D3AFF61A0C79363CA8E3s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibA3562FA20FD10F346A4DD2C912F9226Fs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibA3562FA20FD10F346A4DD2C912F9226Fs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib6931C4FF81D8DAD8A7826A288DC7D5DFs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib6931C4FF81D8DAD8A7826A288DC7D5DFs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib6931C4FF81D8DAD8A7826A288DC7D5DFs1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib2588DD640960D2DCBFC49DBB65915BB6s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib2588DD640960D2DCBFC49DBB65915BB6s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibDB8F08BCAC3892384B228F1007970E03s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bibDB8F08BCAC3892384B228F1007970E03s1
http://refhub.elsevier.com/S0890-5401(24)00074-9/bib4F546D43291298FABEA4A34E4EA14C41s1
https://github.com/aclai-lab/ModalDecisionTrees.jl
https://github.com/aclai-lab/ModalDecisionTrees.jl
https://github.com/bensadeghi/DecisionTree.jl

	Neural-symbolic temporal decision trees for multivariate time series classification
	1 Introduction
	1.1 Overview
	1.2 Motivation
	1.3 Experiments breakdown
	1.4 Structure

	2 Related work
	2.1 From decision trees to neural networks
	2.2 From neural networks to decision trees
	2.3 Hybrid neural-symbolic models

	3 Background
	3.1 Multivariate time series classification
	3.2 Halpern and Shoham’s interval temporal logic
	3.3 Interval temporal decision trees
	3.4 Neural networks

	4 Neural-symbolic hybrids
	4.1 Leaf hybridization
	4.2 Split hybridization
	4.3 Root hybridization

	5 Experimental results
	5.1 Experiment 1: choosing the best hybrid model
	5.1.1 Data
	5.1.2 Experimental setting
	5.1.3 Results and discussion

	5.2 Experiment 2: rule extraction for respiratory diseases
	5.2.1 Data and experimental setting
	5.2.2 Results

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

